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Abstract 
In discrete choice experiments (DCEs), differences between respondents’ preferences may be associated 
with observable or unobservable factors. Unobservable heterogeneity, related to latent factors associated 
with the choices of individuals, may be modelled using correlated (i.e. informative heterogeneity) or 
uncorrelated (i.e. uninformative heterogeneity) individual-specific parameters of a logit model. In this 
study, we simulated unobservable heterogeneity among DCE respondents and compared the results of 
the maximum simulated likelihood (MSL) estimation of the mixed logit model when correctly specified 
and mis-specified. These results show that the MSL estimates are biased and can differ greatly from the 
true parameters, even when correctly specified. Before estimating a mixed logit model, we highly 
recommend that choice modellers conduct simulation analyses to assess the potential extent of biases 
before relying on the MSL estimates, particularly their variances and correlations, and then ultimately 
determine which model specification produces the least bias.  
 
Keywords: Mixed Logit, Unobservable Heterogeneity, Maximum Simulated Likelihood.   
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1. Introduction 

In a discrete choice experiment (DCE), respondents are assigned sets of alternatives and asked to make 

choices under a hypothetical situation. The alternatives in each set are typically described using a 

descriptive system of multi-level attributes. Depending on the hypothetical situation, the choice sets may 

include a referent alternative (i.e., opt-out), for example, “watchful waiting” (e.g., Campbell and Erdem, 

2019). In health preference research (HPR), the primary purpose of a DCE is to test and estimate the 

effects of attribute levels and different alternatives on preferential choice behaviors (Gonzalez, 2019). A 

common mantra in HPR is that choice defines value (Craig et al., 2017). 

In a DCE, the effects of different attribute levels and alternatives on choice behaviors may vary between 

respondents due to differences in their preferences (i.e., preference heterogeneity). Such differences 

may be systematically associated with observable or unobservable factors. Observable heterogeneity 

refers to observed (by the researcher) factors associated with individuals' choices such as age or gender 

(e.g., Craig et al., 2022). On the other hand, unobservable heterogeneity refers to latent factors 

associated with the choices of individuals (e.g., risk perception).  

Unobserved heterogeneity may be described using individual-specific parameters, which may or may not 

be correlated. Uninformative heterogeneity implies that individual-specific parameters vary but are 

uncorrelated within the sample.  Informative heterogeneity means that individual parameters are 

correlated through latent factors; therefore, fixing one parameter for a respondent affects the distribution 

of another. Jumamyradov et al. (2023) simulated DCE data under uninformative and informative 

heterogeneity and compared the conditional logit (CL) estimates to their true values. They found that the 

extent and form of unobservable heterogeneity may result in biased CL estimates, and these biases 

substantively affect willingness-to-pay estimates. It is not typically feasible to estimate individual-specific 

parameters directly; however, some researchers allow for random parameters, namely mixed logit 

specifications. As a natural extension of this prior simulation study, this paper investigates the effects of 

alternative mixed logit specifications on the biases caused by unobservable heterogeneity.  

Informative heterogeneity may be separated into two subtypes based on which parameters are 

correlated. Substitution patterns (e.g., Brownstone and Train, 1999) refer to the presence of a latent 

factor that causes an association with alternative-specific constants (ASCs). For example, the classic red-

bus-blue-bus problem refers to a positive correlation between the two bus alternatives, where a red bus 

is a substitute for a blue one (e.g., Quandt, 1970). An ASC is not the same as a nominal attribute. In this 

classic problem, every set includes three fixed alternatives, namely a car, a red bus, and a blue bus. If the 

color and mode were nominal attributes and varies independently, some sets might include three buses. 

In health economics, a more common example is a choice set with multiple fixed treatment options (e.g., 

a brand-name medication and a generic medication) as well as “watchful waiting” (i.e., no medication). 

Taste patterns (e.g., Revelt and Train, 1998) refer to the presence of a latent factor that causes an 

association between attribute coefficients more generally (i.e., attribute importance). In health 

economics, each alternative may vary by out-of-pocket price, wait times, and other attributes. The 

coefficients of these attributes may be correlated. For example, individuals who are willing to pay more 

for their health care may also prefer more luxurious services (e.g., a brand-name medication).  

Imagine a specific alternative (e.g., a brand-name medication). Under uninformative interpersonal 

heterogeneity, the effect of a specific brand varies between persons, but this effect is not associated with 

another alternative’s effect (i.e., substitution pattern) or the effects of any attributes (i.e., taste pattern). 
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Alternatively, latent factors may induce informative heterogeneity, such as a substitution pattern 

between brands or a taste pattern between a brand and out-of-pocket cost.   

For simplicity, we generated preferential choice behaviors for a standard DCE with a full factorial design 

(see Appendix A) and individual-specific unobserved coefficients drawn from a lognormal distribution. 

Each task represents a choice between three alternatives to illustrate uninformative and informative 

heterogeneity, including substitution and taste patterns. Each alternative is described using a nominal 

attribute and a numeric one, namely: medication and out-of-pocket price (see Appendix A for out-of-

pocket price). For example, the correlation between the effects of brand and generic is a substitution 

pattern, and the correlation between the effects of medication and price is a taste pattern. Willingness-

to-pay for a brand-name medication is the ratio of the brand-name medication and price effects. This DCE 

was constructed to mimic the classic red-bus-blue-bus example.    

Generally, a mixed logit is the same as a conditional logit, except it allows for random parameters (i.e., 

more flexible) and is estimated using maximum simulated likelihood (MSL). The MSL estimator has 

become a widely used simulation-based method among applied economists to numerically evaluate 

models the likelihood function of which cannot be expressed in a closed-form and, therefore, cannot be 

evaluated analytically using the maximum likelihood (ML) estimator. However, the MSL estimator is 

biased for a fixed number of simulations, which is a results of the log transformation of the simulated 

likelihood (see Gourieroux and Monfort, 1990, Lee 1995, and Hajivassiliou et al., 1994, Train, 2009). 

Furthermore, recently Jumamyradov and Munkin (2022) showed that the MSL estimator produce 

significant biases when applied to the bivariate normal and bivariate Poisson-lognormal models. We 

expect that similar biases might appear in the MSL estimation of the mixed logit model within the context 

of a DCE. 

Apart from simulation bias and other nuances (e.g., number of Halton draws), determining which 

parameters should be allowed to be random in the mixed logit model depends on the researcher’s 

assumptions. Knowing the specification of the unobservable heterogeneity in advance can be challenging. 

Therefore, this simulation study examines the performance of the MSL estimation of the mixed logit 

model targeting three questions: 

1. What happens when the mixed logit model is correctly specified (simulation bias)? 

2. What happens when the mixed logit model erroneously restricts a correlation (under-

specification)? 

3. What happens when the mixed logit model erroneously allows a correlation (over-specification)? 

More specifically, we compare the mixed logit estimates and true parameters under uninformative and 

informative heterogeneity to assess differences due to simulation and misspecification. In this paper, we 

emphasized the estimation of the correlations, not the variances. Note that increasing the variances only 

increases the scale of the biases and has no effect on the correlations.    

Depending on the experimental design, analysts may take two general approaches when accounting for 

interpersonal heterogeneity in panel data analysis. First, in rare cases, the analyst can estimate individual-

specific parameters per respondent if the DCE has a large number of tasks per respondent relative to the 

number of parameters (i.e., fixed effects). When this is not the case, the analyst may estimate a random 

parameter model by making distributional assumptions about the prevalence of parameters within the 

population (e.g., mixed logit). To estimate a random-parameter model, the analyst will need to specify 

the correlation structure between the random parameters, often with little prior information. 
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Since its advent in 1980s, mixed logit estimation has been increasingly utilized in the analysis of DCE 

responses (e.g., air travel: Hossain et al., 2018; healthcare: Soekhai et al., 2019). For instance, Clark et al. 

(2014) report that while only 3% of health-related DCE papers published during 1990-2000 utilized the 

mixed logit model in their estimations, that number increased to 21% during 2009-2012. Our null 

hypothesis is that the mixed logit estimation accurately describes the unobservable heterogeneity in DCE 

responses. The rest of the paper is organized as follows. Section 2 presents the mixed logit model, the 

DCE simulations, MSL estimation, and comparison procedure details. Section 3 presents the results and 

concludes.   

2. Methods 

a. The Mixed Logit Model 

The theoretical framework of choice analysis is based on the random utility maximization (RUM) theory 

(e.g., Marschak, 1960). According to RUM theory, utility function 𝑈𝑖𝑡𝑗 = 𝑉𝑖𝑡𝑗 + 𝜀𝑖𝑡𝑗  of individual 𝑖 = 1, … 𝑁 

for alternative 𝑗 = 1, … , 𝐽 at choice task 𝑡 = 1, … 𝑇 can be decomposed into deterministic part of utility 

𝑉𝑖𝑡𝑗  (representative utility) which is observed by the researcher, and random part of utility 𝜀𝑖𝑡𝑗  which is 

not observed by the researcher.  

Following McFadden (1974), individual 𝑖 will choose alternative 𝑗 if and only if the probability that utility 

associated with alternative 𝑗 is higher than utilities associated with all other alternatives 

 

𝑃𝑖𝑡𝑗 = 𝑃(𝑈𝑖𝑡𝑗 > 𝑈𝑖𝑡𝑘 , ∀  𝑘 ≠ 𝑗) 

𝑃𝑖𝑡𝑗 = 𝑃(𝑉𝑖𝑡𝑗 + 𝜀𝑖𝑡𝑗 > 𝑉𝑖𝑡𝑘 + 𝜀𝑖𝑡𝑘 , ∀  𝑘 ≠ 𝑗) 

𝑃𝑖𝑡𝑗 = 𝑃(𝜀𝑖𝑡𝑘 − 𝜀𝑖𝑡𝑗 < 𝑉𝑖𝑡𝑗 − 𝑉𝑖𝑡𝑘 , ∀  𝑘 ≠ 𝑗) 

(1) 

To derive the choice probabilities, we need to make distributional assumptions about the random part of 

utility. The conditional logit (CL) model is derived under the assumption that 𝜀𝑖𝑡𝑗 is independently and 

identically distributed (IID) with extreme value type 1 (EV1) distribution (e.g., Revelt and Train, 1998; 

Brownstone and Train, 1999; McFadden and Train, 2000). As a result, the difference of two IID EV1 random 

error terms (𝜀𝑖𝑡𝑘 − 𝜀𝑖𝑡𝑗) has a logistic distribution. This implies that the choice probabilities of the 

conditional logit model can be expressed in terms of logistic distribution with cumulative distribution 

function 

 𝑃𝑖𝑡𝑗 =
1

1 + ∑ exp [(𝑉𝑖𝑡𝑘 − 𝑉𝑖𝑡𝑗)]
𝐽
𝑘=1

, ∀ 𝑘 ≠ 𝑗 (2) 

Under the conditional logit, representative utility 𝑉𝑖𝑡𝑗  is a function of alternative attributes, typically linear 

in parameters. However, the mixed logit extends the conditional logit through individual-specific 

parameters (e.g., Hensher et. al., 2005). The mixed logit model can account for various kinds of 

unobservable heterogeneity, but its flexibility comes with a cost. The choice probabilities of the mixed 

logit model do not have a closed-form expression. Therefore, the estimation of the mixed logit model 

relies on simulation-based methods such as the maximum simulated likelihood estimator (MSL) (e.g., 

Greene, 2012).In this paper, simulation bias refers to the difference between estimated and true 

parameter values, when the estimated mixed logit model is correctly specified. 

Furthermore, we examine biases due to misspecification of the mixed logit models. In particular, a model 

may be under-specified when the researcher erroneously restricts a correlation (i.e. under-specification 



 

6 
 

bias) between random parameters. Similarly, a researcher erroneously assumes that random parameters 

are correlated with each other (i.e. over-specification bias). We conducted a series of simulations to 

assess differences between mixed logit estimates and true parameters due to simulation and 

misspecification biases. 

b. Simulation 

Using a standard DCE, we generate choices between three alternatives, where the third alternative serves 
as a referent (i.e., opt-out; Campbell and Erdem, 2019). For identification of the parameters, we normalize 
the model by assuming that the coefficients of the opt-out alternative are equal to zero. Therefore, the 
deterministic part of the opt-out alternative will be represented as 𝑉𝑖𝑡3 = 0. For example, imagine the 
decision between a brand-name medication, generic medication or doing nothing. Hence, we assume that 
the representative utilities of three alternatives will take the following form 

 

𝑉𝑖𝑡1 = 𝛼𝑖1 − 𝛽𝑖𝑥𝑡1 
𝑉𝑖𝑡2 = 𝛼𝑖2 − 𝛽𝑖𝑥𝑡2 

𝑉𝑖𝑡3 = 0 

(3) 

and therefore, utility differences between each alternative and opt-out will be 

 
𝑍𝑖𝑡1 = 𝛼𝑖1 − 𝛽𝑖𝑥𝑡1 + 𝜂𝑖𝑡1          𝜂𝑖𝑡1 ∼ 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1) 
𝑍𝑖𝑡2 = 𝛼𝑖2 − 𝛽𝑖𝑥𝑡2 + 𝜂𝑖𝑡2          𝜂𝑖𝑡2 ∼ 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0,1) 

(4) 

where 𝑥𝑡1 and 𝑥𝑡2 are out-of-pocket prices (see the Appendix A for the values of out-of-pocket price), 𝛼𝑖1 

and 𝛼𝑖2 are alternative-specific constants (ASCs), 𝛽𝑖 is a random price coefficient, 𝑍𝑖𝑡1 = 𝑈𝑖𝑡1 − 𝑈𝑖𝑡3 and 

𝑍𝑖𝑡2 = 𝑈𝑖𝑡2 − 𝑈𝑖𝑡3 are two utility differences, and finally 𝜂𝑖𝑡1 = 𝜀𝑖𝑡1 − 𝜀𝑖𝑡3 and 𝜂𝑖𝑡2 = 𝜀𝑖𝑡2 − 𝜀𝑖𝑡3 are 

differences in IID EV1 error terms. Under this specification, the willingness-to-pay for each brand is the 

ratio of the ASC and price coefficient, 𝛼𝑖1/𝛽𝑖 and 𝛼𝑖2/𝛽𝑖. Notice that we have a negative sign in front of 

the price coefficient 𝛽𝑖 to represent the fact that people dislike paying more. 

In our model specification, we use two ASCs (𝛼𝑖1 and 𝛼𝑖2) to allow for their correlation. Alternatively, a 

nominal attribute for opt-in (𝛼𝑖) may be included instead of two ASCs. However, that specification would 

deviate from the red-bus-blue-bus example. Similar in health economics is the case of choosing between 

three ways to see heartburn relief where the alternatives are a brand-name medication, a generic 

medication or doing nothing. It seems appropriate to allow the ASCs for the brand-name and generic 

medications to be correlated, and not combined as a treatment attribute. 

Since the random out-of-pocket cost 𝛽𝑖 enters the denominator, careful consideration of its distribution 

is important. Daly et al. (2012) show that whether the distribution of WTP has finite moments depends 

on the distribution of 𝛽𝑖. In this paper, we assume that all three random variables have a lognormal 

distribution such as 

𝛽𝑖 = exp(𝛽 + 𝑣𝛽𝑖
)  

𝛼1𝑖 = exp(𝛼1 + 𝑣𝛼1𝑖
)  

𝛼2𝑖 = exp(𝛼2 + 𝑣𝛼2𝑖
)  

where (𝑣𝛼1𝑖
, 𝑣𝛼2𝑖

, 𝑣𝛽𝑖
) ∼ 𝑁((0,0,0), Σ) has a multivariate normal distribution with the following 

covariance matrix 
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 Σ = [

𝜎1
2 𝜎1𝜎2𝜌𝛼 𝜎1𝜎𝛽𝜌𝛽

𝜎1𝜎2𝜌𝛼 𝜎2
2 0

𝜎1𝜎𝛽𝜌𝛽 0 𝜎𝛽
2

] (5) 

with 𝜎1
2 = 𝑉𝑎𝑟(𝑣𝛼1𝑖

), 𝜎2
2 = 𝑉𝑎𝑟(𝑣𝛼2𝑖

), 𝜎𝛽
2 = 𝑉𝑎𝑟(𝑣𝛽𝑖

),  𝜌𝛼 = 𝐶𝑜𝑟𝑟(𝑣𝛼1𝑖
, 𝑣𝛼2𝑖

), and 𝜌𝛽 =

𝐶𝑜𝑟𝑟(𝑣𝛼1𝑖
, 𝑣𝛽𝑖

). In this covariance matrix, informative heterogeneity can further be separated based on 

whether the correlation is between the alternative-specific constants, 𝜌𝛼  (i.e. substitution patterns) or 

alternative attributes, 𝜌𝛽 (i.e. taste patterns). Notice that we do not generate data with 𝐶𝑜𝑟𝑟(𝑣𝛼2𝑖
, 𝑣𝛽𝑖

), 

because we found no substantive differences between the data generated with 𝐶𝑜𝑟𝑟(𝑣𝛼1𝑖
, 𝑣𝛽𝑖

) or 

𝐶𝑜𝑟𝑟(𝑣𝛼2𝑖
, 𝑣𝛽𝑖

).  

The mean and variance of lognormal random variables 𝛽𝑖 and 𝛼1𝑖 are 

𝐸(𝛽𝑖) = exp(𝛽 + 𝜎𝛽
2/2) 

𝐸(𝛼1𝑖) = exp(𝛼1 + 𝜎1
2/2) 

𝑉𝑎𝑟(𝛽𝑖) = exp(2𝛽 + 𝜎𝛽
2)[exp(𝜎𝛽

2) − 1] 

𝑉𝑎𝑟(𝛼1𝑖) = exp(2𝛼1 + 𝜎1
2)[exp(𝜎1

2) − 1] 

Notice that the WTP, which is a ratio of two lognormal random variables, also has a lognormal 

distribution  

𝑊𝑇𝑃𝛼1
=

𝛼1𝑖

𝛽𝑖
=

exp(𝛼1 + 𝑣𝛼1𝑖
)

exp(𝛽 + 𝑣𝛽𝑖
)

= exp (𝛼1 − 𝛽 + 𝑣𝛼1𝑖
− 𝑣𝛽𝑖

) 

with mean and variance as following  

𝐸(𝑊𝑇𝑃𝛼1
) = exp (𝛼1 − 𝛽 +

𝜎1
2 − 2𝜎1𝜎𝛽𝜌𝛽 + 𝜎𝛽

2

2
) 

𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) = exp(2(𝛼1 − 𝛽) + 𝜎1

2 − 2𝜎1𝜎𝛽𝜌𝛽 + 𝜎𝛽
2)[exp(𝜎1

2 − 2𝜎1𝜎𝛽𝜌𝛽 + 𝜎𝛽
2) − 1] 

In the data generation process, the true means of the representative utility parameters (equation 3) were 

fixed at 𝛼1 = 𝛼2 = 𝛽 = 1 (e.g., brand-name medication, generic medication, and out-of-pocket price, 

respectively). Furthermore, we generate various covariance matrices (equation 5) based on the true 

values we choose for the variances and correlations, and we refer to each distinct covariance matrix as a 

“parameter set” (see Table 1). For each parameter set, we generated 100 datasets (𝑅 = 100), each 

including 25 choices (𝑇 = 25) for 200 respondents (𝑁 = 200) given a standard DCE with a full factorial 

experimental design. We acknowledge that this design may include dominated alternatives. However, 

since this is a simulation study, the existence of dominated alternatives should not be a concern. 

The simulated covariance matrices fall into three distinct groups: the first group (i.e., Group 1) represents 
uninformative heterogeneity (i.e., uncorrelated random parameters; 𝜌𝛼 = 𝜌𝛽 = 0) with different 

variances, and the last two groups (i.e., Group 2 and Group 3) represent informative heterogeneity (i.e., 
correlated random parameters; 𝜌𝛼 ≠ 0 or 𝜌𝛽 ≠ 0) where the variances are fixed at 0.15. For instance, in 

Group 1 we assume that 𝜎1
2, 𝜎2

2 and 𝜎𝛽
2 range from 0.05 to 0.25 with increments of 0.1 (i.e. 𝜎1

2 = 𝜎2
2 =

𝜎𝛽
2 = {0.05, 0.15,0.25} or 𝜎1

2 = 𝜎2
2 = 𝜎𝛽

2 = {0.05: 0.1: 0.25}) and we assume that 𝜌𝛼 = 𝜌𝛽 = 0. Since 
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there are 3 different values for each 𝜎1
2, 𝜎2

2 and 𝜎𝛽
2, we can create 33=27 combinations of parameter sets 

for the true covariance matrix.  

In the Group 2 we generate the data with fixed variances 𝜎1
2 = 𝜎2

2 = 𝜎𝛽
2 = 0.15 and different values for 

𝜌𝛽 ranging from −0.95 to 0.95 with increments of 0.05 (i.e. 𝜌𝛽 = {−0.95: 0.05: 0.95}). In the Group 3 we 

generate the data with fixed variances 𝜎1
2 = 𝜎2

2 = 𝜎𝛽
2 = 0.15 and different values for 𝜌𝛼  ranging from 

0.05 to 0.95 with increments of 0.05 (i.e. 𝜌𝛼 = {0.05: 0.05: 0.95}). Therefore, in Group 2 and Group 3, 

there are 38 and 19 nonzero correlation values, respectively. For brevity, we define 𝜎2 = {𝜎1
2, 𝜎2

2, 𝜎𝛽
2} and 

𝜌 = {𝜌𝛼 , 𝜌𝛽}. 

Table 1: Parameter Sets for the Simulation of Informative and Uninformative Heterogeneity 

 Group 𝜎1
2 𝜎2

2 𝜎𝛽
2  𝜌𝛼 𝜌𝛽 

Parameter 
sets 

Uninformative 
Heterogeneity 

1 
No Patterns 

0.05: 0.1: 0.25 0.05: 0.1: 0.25 0.05: 0.1: 0.25 0 0 27 

Informative 
Heterogeneity 

2  
Taste 

Patterns 
0.15 0.15 0.15 0 −0.95: 0.05: 0.95 38 

3 
Substitution  

Patterns 
0.15 0.15 0.15 0.05: 0.05: 0.95 0 19 

 
c. Estimation 

To analyze simulation and misspecification biases in each simulated dataset with various parameter sets, 
we estimated different specifications of the mixed logit model using 500 Halton draws. For simulation 
bias, we estimate the mixed logit model assuming that the researcher knows the accurate specification of 
the data generation process. For instance, when the data is generated using the Group 1, we estimate the 
mixed logit model assuming 𝜌𝛼 = 𝜌𝛽 = 0. When the data are generated using the Group 2, we estimate 

the mixed logit model assuming 𝜌𝛼 = 0 and 𝜌𝛽 ≠ 0. Lastly, when the data are generated using the Group 

3, we estimate the mixed logit model assuming 𝜌𝛽 = 0 and 𝜌𝛼 ≠ 0. 

To analyze misspecification bias, we estimate an inaccurate specifications of the mixed logit model by 
either restricting (i.e., under-specification) or unrestricting (i.e. over-specification) correlations in the 
estimation process. For instance, to analyze the under-specification bias, we generate the data using the 
Group 2 or Group 3, however, we estimate the mixed logit model where we restrict 𝜌𝛼 = 𝜌𝛽 = 0. To 

analyze the over-specification bias, we generate the data using the Group 1, however, we estimate the 
model where we allow 𝜌𝛽 ≠ 0 or 𝜌𝛼 ≠ 0. The goal in these analysis is to examine whether MSL estimation 

of the mixed logit model produce accurate estimates, and more importantly, to see if the results produce 
accurate WTP.   

Overall, in this paper we estimate three different mixed logit models, which differ based on correlation 
restrictions. The first model, Model 1, assumes that 𝜌𝛼 = 𝜌𝛽 = 0. The second model, Model 2, assumes 

that 𝜌𝛽 ≠ 0 but 𝜌𝛼 = 0. In the third model, Model 3, we assume that 𝜌𝛼 ≠ 0 but 𝜌𝛽 = 0.  

In Table 2 we summarize different biases we analyze in this paper (i.e., simulation, over-specification and 
under-specification biases). Notice that if we generate the data using the Group 1 and estimate the mixed 
logit model using the Model 1, occurring bias in the estimated parameters will represent the simulation 
bias. Similarly, if we generate the data using the Group 1 and estimate the Model 2, occurring bias in the 
estimated parameters will represent the over-specification bias.  

Table 2: Different models and groups of data generation processes. 
 Group 1 Group 2 Group 3 
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No Patterns: 𝜌𝛽 = 𝜌𝛼 = 0 Taste: 𝜌𝛽 ≠ 0, 𝜌𝛼 = 0 Substitution: 𝜌𝛽 = 0, 𝜌𝛼 ≠ 0 

Model 1 
  No Patterns: 𝜌𝛽 = 𝜌𝛼 = 0 

Simulation bias 
Under-specification bias, 

 restricted 𝜌𝛽 
Under-specification bias, 

restricted 𝜌𝛼 

Model 2 
  Taste: 𝜌𝛽 ≠ 0, 𝜌𝛼 = 0 

Over-specification bias, 
unrestricted 𝜌𝛽 

Simulation bias 
 

Model 3 
  Substitution: 𝜌𝛽 = 0, 𝜌𝛼 ≠ 0 

Over-specification bias, 
unrestricted 𝜌𝛼 

 
Simulation bias 

 
d. Comparison between True and Estimated Values 

First, we describe simulation bias by comparing the true and estimated values obtained from accurate 
specification of uninformative (i.e. Group 1) and informative heterogeneity (i.e., Group 2 and Group 3). 
As a measure of biases, we use the Wald distance of the estimated and true values based on the estimated 
standard errors (see Greene, 2012).  Second, we describe under-specification bias by comparing the true 
and estimated values obtained from Group 2 (i.e., restricted 𝜌𝛽 = 0) and Group 3 (i.e., restricted 𝜌𝛼 = 0). 

Lastly, we describe over-specification bias by comparing the true and estimated values obtained from the 
Group 1 (i.e., unrestricted 𝜌𝛽 ≠ 0 or 𝜌𝛼 ≠ 0).  

3. Results 

This section summarizes the results that we believe ideally address the questions put forward in the 
introduction regarding simulation bias, under-specification (i.e., restricted correlation) and over-
specification (i.e. unrestricted correlation) of MSL estimation of the mixed logit model. Standard error of 
each parameter was calculated by dividing its standard deviation over 100 simulations by the square root 
of 100. 

3.1. Simulation Bias 
As mentioned earlier, simulation bias represents the bias occurring when the mixed logit model is 
correctly specified. To analyze the simulation bias, we present Table 3 where we show MSL results of the 
mixed logit model with the Group 1 data generation process. Since there are 27 parameter sets with 
different true variances, in Table 3 we present the results of only nine combinations of variances. The rest 
of the results can be found in the Supplementary Materials. The true values of variances in Table 3 are 

chosen such that 𝜎1
2 and 𝜎2

2 each has three values {0.05, 0.15, 0.25}, and 𝜎𝛽
2 does not vary (𝜎𝛽

2 = 0.15). 

In Table 3, we show the estimated parameters as well as the true and estimated WTP with their respective 
standard errors in brackets.  

There are three observations that we would like to point out about the simulation bias on Group 1. First, 
notice that the MSL estimator produces biased results for 𝛼1, 𝛼2 and 𝛽 in all nine specifications presented 

in the table. Specifically, when the true coefficients are 𝛼1 = 1, 𝛼2 = 1, 𝛽 = 1, with variances  𝜎1
2 = 0.05, 

𝜎2
2 = 0.05 and 𝜎𝛽

2 = 0.15 (i.e., first column), the estimated coefficients are equal to 1.117 (0.003), 1.118 

(0.003) and 1.121 (0.003), respectively, all three of which are separated from their true values by 
approximately 40 standard errors.  

Second observation is that the estimated variances are biased as well. For instance, when the true 

variances are 𝜎1
2 = 0.05, 𝜎2

2 = 0.05 and 𝜎𝛽
2 = 0.15 (i.e., first column), MSL estimates are 0.222 (0.003), 

0.219 (0.003) and 0.378 (0.003) which are separated from their true values by more than 57, 56 and 43 
standard errors, respectively. Therefore, the null hypothesis that the estimated coefficients and variances 
are equal to their respective true values may be rejected for all these parameters. 

Third observation is that even though the parameter estimates are biased, the estimated WTP results are 

close to their true values. For instance, when the true variances are 𝜎1
2 = 0.05, 𝜎2

2 = 0.05 and 𝜎𝛽
2 = 0.15 
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(i.e., first column), the estimated 𝐸(𝑊𝑇𝑃𝛼1
) and 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1

) are -1.097 (0.004) and 0.259 (0.004), which 

are separated from their respective true values -1.105 and 0.270 by less than three standard errors (i.e. 
typical margin or error). Furthermore, all 36 estimated WTP parameters (i.e., 9 columns, 2 mean values 
and 2 variances each) are within the typical margin of error. Therefore, we conclude that although there 
is a simulation bias in the coefficients and variances of the Group 1, it does not substantively affect the 
estimated WTP. Similar patterns can be seen in results presented in the Supplementary Materials. 

Table 3: Model 1 Estimation for Group 1 (i.e., Simulation Bias) 

 

𝜎1
2 = 0.05 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝛼1 = 1 1.117 1.110 1.117 1.114 1.105 1.109 1.119 1.110 1.111 

 (0.003) (0.004) (0.005) (0.003) (0.004) (0.005) (0.003) (0.004) (0.005) 

𝛼2 = 1 1.118 1.107 1.116 1.116 1.107 1.110 1.123 1.115 1.108 

 (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.005) (0.005) (0.004) 

𝛽 = 1 1.121 1.113 1.116 1.120 1.114 1.111 1.125 1.115 1.121 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) 

𝜎1
2  0.222 0.383 0.493 0.225 0.388 0.494 0.219 0.383 0.500 

 (0.003) (0.003) (0.004) (0.003) (0.003) (0.004) (0.007) (0.004) (0.005) 

𝜎2
2  0.219 0.232 0.218 0.384 0.386 0.387 0.493 0.490 0.500 

 (0.003) (0.003) (0.005) (0.003) (0.004) (0.003) (0.005) (0.004) (0.004) 

𝜎𝛽
2 0.378 0.377 0.373 0.375 0.380 0.378 0.364 0.378 0.374 

 (0.003) (0.003) (0.008) (0.003) (0.003) (0.004) (0.011) (0.004) (0.004) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.105 -1.105 -1.105 -1.162 -1.162 -1.162 -1.221 -1.221 -1.221 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.097 -1.154 -1.219 -1.095 -1.150 -1.215 -1.097 -1.153 -1.208 

 (0.004) (0.005) (0.007) (0.005) (0.006) (0.007) (0.004) (0.005) (0.008) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.098 -1.098 -1.104 -1.152 -1.153 -1.160 -1.215 -1.215 -1.204 

 (0.005) (0.005) (0.004) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.270 0.472 0.734 0.270 0.472 0.734 0.270 0.472 0.734 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.270 0.270 0.270 0.472 0.472 0.472 0.734 0.734 0.734 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.259 0.453 0.719 0.258 0.463 0.715 0.265 0.457 0.719 

 (0.004) (0.008) (0.017) (0.005) (0.009) (0.017) (0.006) (0.010) (0.020) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.258 0.266 0.266 0.450 0.462 0.466 0.712 0.704 0.707 

 (0.005) (0.005) (0.005) (0.008) (0.009) (0.010) (0.018) (0.015) (0.015) 

In Table 4, we present MSL parameter estimates for Group 2 (taste patterns). Notice that we do not 

estimate 𝜎1
2 because we restrict it at its true value 0.15 for identification. Since in Group 2 there are 38 

parameter sets with different true correlations (see Table 1), in Table 4 we present only the results of 
eight parameter sets. The rest of the results can be found in the Supplementary Materials.  

Similar to the results we found in Table 3, the MSL estimator produces biased results in the Group 2 as 
well. Specifically, in all eight specifications presented in Table 4, the estimated mean coefficients (i.e., 𝛼1, 
𝛼2, 𝛽) are separated from their true values by approximately 40 standard errors. Furthermore, in all eight 

columns of Table 4, the estimated variances (i.e., 𝜎2
2, 𝜎𝛽

2) are separated from their true values by 

approximately 70 standard errors. Therefore, the null hypothesis that the estimated coefficients and 
variances are equal to their respective true values may be rejected.   

On the contrary, we can see in Table 4 that MSL results of the estimated 𝜌𝛽 are relatively accurate than 

the estimated coefficients and variances. For instance, the true and estimated 𝜌𝛽 are separated from each 

other by more than three standard errors only in two out of eight columns. Specifically, when the true 
correlation is 𝜌𝛽 = −0.75 and 𝜌𝛽 = −0.35, their estimated values are −0.798 (0.013) and 

−0.398 (0.013), respectively, both of which are separated from their true values by 3.7 standard errors.  

However, similar to the results we observed in Table 3, even though there are biases in the estimated 
coefficients, variances and correlation, the estimated mean and variance of WTP are mostly close to their 
true values. There are only a few instances where the WTP parameters are separated from their true 
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values by more than 3 standard errors (i.e., biased). For instance, the estimated 𝐸(𝑊𝑇𝑃𝛼1
) is biased when 

the true correlation 𝜌𝛽 = 0.55 and 𝜌𝛽 = 0.75, the estimated 𝐸(𝑊𝑇𝑃𝛼2
) is biased when the true 

correlation 𝜌𝛽 = −0.75, and finally the estimated 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) is biased when the true correlation 𝜌𝛽 =

0.35 and 𝜌𝛽 = 0.55. Therefore, the simulation bias in the Group 2 (taste patterns) does not seem to affect 

the estimated WTP.   

Table 4: Model 2 Estimation for Group 2 (i.e., Simulation Bias) 
 𝜌𝛽 = −0.95 𝜌𝛽 = −0.75 𝜌𝛽 = −0.55 𝜌𝛽 = −0.35 𝜌𝛽 = 0.35 𝜌𝛽 = 0.55 𝜌𝛽 = 0.75 𝜌𝛽 = 0.95 

𝛼1 = 1 1.113 1.107 1.108 1.106 1.106 1.110 1.106 1.121 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

𝛼2 = 1 1.115 1.102 1.106 1.108 1.109 1.112 1.114 1.123 

 (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) 

𝛽 = 1 1.115 1.117 1.116 1.114 1.117 1.118 1.121 1.131 

 (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.004) (0.004) 

𝜎2
2 = 0.15  0.379 0.385 0.385 0.378 0.391 0.382 0.381 0.379 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝜎𝛽
2 = 0.15  0.385 0.380 0.383 0.381 0.371 0.368 0.373 0.380 

 (0.003) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝜌𝛽  -0.943 -0.798 -0.588 -0.398 0.294 0.527 0.734 0.948 

 (0.009) (0.013) (0.015) (0.013) (0.010) (0.008) (0.006) (0.002) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.340 -1.300 -1.262 -1.225 -1.102 -1.070 -1.038 -1.008 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 1.427 1.167 0.942 0.749 0.262 0.165 0.084 0.015 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.337 -1.293 -1.259 -1.221 -1.095 -1.063 -1.025 -0.998 

 (0.009) (0.008) (0.009) (0.007) (0.004) (0.004) (0.003) (0.002) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.160 -1.143 -1.150 -1.151 -1.149 -1.147 -1.147 -1.148 

 (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.006) (0.006) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 1.425 1.189 0.978 0.769 0.272 0.165 0.085 0.016 

 (0.031) (0.028) (0.025) (0.016) (0.005) (0.003) (0.002) (0.001) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.463 0.451 0.464 0.450 0.454 0.436 0.442 0.447 

 (0.008) (0.008) (0.010) (0.009) (0.008) (0.009) (0.009) (0.008) 

In Table 5, we present the results for the Group 3 (substitution patterns) where we find similar patterns 
in terms of the estimated parameters and WTP. Specifically, in all nine columns presented in Table 5, the 
estimates of coefficients and variances are separated from their true values by more than three standard 
errors, and therefore, the MSL estimator produces biased results for the coefficients 𝛼1, 𝛼2 and 𝛽, and 

variances 𝜎1
2 and 𝜎2

2.  

However, similar to the results in Table 4, the MSL estimator produces relatively more accurate results for 
the correlation parameter 𝜌𝛼. For instance, in Table 5, MSL produces biased result for 𝜌𝛼  only when its 
true value is 𝜌𝛼 = 0.5, which is separated from its estimated value 0.532 (0.009) by 3.5 standard errors. 
However, regardless of these simulation biases occurring in the estimation of parameters, they do not 
substantively affect the estimated WTP.  

Table 5: Model 3 Estimation for Group 3 (i.e., Simulation Bias) 
 𝜌𝛼 = 0.1 𝜌𝛼 = 0.2 𝜌𝛼 = 0.3 𝜌𝛼 = 0.4 𝜌𝛼 = 0.5 𝜌𝛼 = 0.6 𝜌𝛼 = 0.7 𝜌𝛼 = 0.8 𝜌𝛼 = 0.9 

𝛼1 = 1 1.112 1.112 1.118 1.115 1.113 1.111 1.110 1.117 1.111 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝛼2 = 1 1.107 1.116 1.120 1.114 1.115 1.110 1.111 1.116 1.110 

 (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝛽 = 1 1.118 1.127 1.120 1.121 1.117 1.120 1.109 1.117 1.120 

 (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) 

𝜎2
2 = 0.15 0.387 0.392 0.390 0.390 0.382 0.393 0.390 0.388 0.390 

 (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.003) (0.003) 

𝜎𝛽
2 = 0.15 0.379 0.366 0.369 0.373 0.382 0.374 0.381 0.370 0.372 

 (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝜌𝛼 0.126 0.237 0.321 0.426 0.532 0.616 0.711 0.806 0.904 

 (0.014) (0.013) (0.013) (0.011) (0.009) (0.008) (0.007) (0.005) (0.002) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 
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True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.153 -1.138 -1.154 -1.151 -1.156 -1.148 -1.163 -1.156 -1.147 

 (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.005) (0.006) (0.005) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.148 -1.145 -1.159 -1.152 -1.157 -1.150 -1.166 -1.155 -1.147 

 (0.006) (0.005) (0.006) (0.006) (0.006) (0.005) (0.005) (0.006) (0.005) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.460 0.429 0.447 0.449 0.466 0.450 0.468 0.450 0.444 

 (0.008) (0.006) (0.007) (0.007) (0.008) (0.008) (0.007) (0.008) (0.006) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.461 0.445 0.459 0.457 0.463 0.461 0.479 0.454 0.450 

 (0.010) (0.008) (0.009) (0.009) (0.009) (0.009) (0.008) (0.010) (0.008) 

 
3.2. Under Specification Bias 

Next, we analyze under-specification bias. Recall that in Table 4 we present the Model 2 estimation (i.e., 
correct specification) results of the Group 2 and analyze simulation bias. In Table 6, we present the Model 
1 estimation (i.e., restricted 𝜌𝛽 = 0) results for the Group 2. By comparing Tables 4 and 6, we infer the 

effects of restricting 𝜌𝛽 on the mixed logit estimates apart from simulation bias. 

There are three observations that we would like to point out. The first observation relates to the estimated 

coefficients 𝛼1, 𝛼2, and 𝛽. The second observation is related to the estimated variances 𝜎2
2 and 𝜎𝛽

2. Finally, 

the third observation relates to the estimated WTP parameters.  

First, restricting a positive 𝜌𝛽 has a different effect on the estimated coefficients than restricting a 

negative 𝜌𝛽. Specifically, restricting a negative 𝜌𝛽 slightly increases the bias in the estimated coefficients 

𝛼1, 𝛼2, and 𝛽. However, restricting a positive 𝜌𝛽 substantively reduces the bias in the coefficients, 

countering the simulation bias. For instance, in Table 6, when the true 𝜌𝛽 = −0.95, the estimated 𝛼1, 𝛼2, 

and 𝛽 are 1.122 (0.004), 1.118 (0.004) and 1.130 (0.004), which are separated from their true values 
relatively more than their counterparts in Table 4, implying that restricting 𝜌𝛽 increases the under-

specification bias. However, when the true value is 𝜌𝛽 = 0.95, the estimated 𝛼1, 𝛼2, and 𝛽 are 1.104 

(0.004), 1.085 (0.004) and 1.097 (0.004), which are substantively closer to their true values than the 
estimated coefficients in Table 4. 

Second, when we compare the estimated variances, there are a few non-negligible differences between 
the estimates we find in Table 4 and Table 6. For instance, among all nine columns presented in Table 4, 

the largest and smallest estimated 𝜎2
2 are 0.391 (0.004) and 0.378 (0.004), which occur when the true 

correlations are 𝜌𝛽 = 0.35 and 𝜌𝛽 = −0.35, respectively. However, in Table 6, the estimated 𝜎2
2 

monotonically increases from 0.351 (0.003) to 0.480 (0.004) when the true correlations are 𝜌𝛽 = −0.95 

and 𝜌𝛽 = 0.95, respectively. Given that the true value is 𝜎2
2 = 0.15, the results in Table 4 and Table 6 

suggests that restricting 𝜌𝛽 increases the bias in the estimated 𝜎2
2. 

Similarly, the largest and smallest estimated 𝜎𝛽
2 in Table 4 are 0.368 (0.003) and 0.385 (0.003), 

respectively. However, the estimated 𝜎𝛽
2 in Table 6 monotonically decreases from 0.434 (0.003) to 0.150 

(0.006) when the true correlations are 𝜌𝛽 = −0.95 and 𝜌𝛽 = 0.95, respectively. Therefore, we can 

conclude that restricting 𝜌𝛽 = 0 adds more variation to the estimated variances 𝜎2
2 and 𝜎𝛽

2.   

Finally, recall that the estimated mean and variance of WTP in Table 4 are mostly close to their true values. 
Specifically, in Table 4, only 4 out of 36 estimated WTP parameters are separated from their respective 
true values by more than 3 standard errors (i.e., 9 columns with 4 estimated WTP parameters each). 
However, when we compare the WTP results from Table 4 to the results we observe in Table 6, we note 
that restricting 𝜌𝛽 increased the bias in the mean and variance of WTP. Specifically, 25 out of 36 estimated 

WTP parameters are separated from their respective true values by more than 3 standard errors. 
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Therefore, we can conclude that although mis-specifying the mixed logit model by restricting 𝜌𝛽 may 

sometimes positively affect the estimated coefficients and variances, however, it negatively affects the 
estimated WTP parameters.   

Table 6: Under Specification for Group 2 (Restricted 𝜌𝛽) 
 𝜌𝛽 = −0.95 𝜌𝛽 = −0.75 𝜌𝛽 = −0.55 𝜌𝛽 = −0.35 𝜌𝛽 = 0.35 𝜌𝛽 = 0.55 𝜌𝛽 = 0.75 𝜌𝛽 = 0.95 

𝛼1 = 1 1.122 1.120 1.116 1.113 1.105 1.106 1.099 1.104 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

𝛼2 = 1 1.118 1.110 1.112 1.113 1.104 1.102 1.096 1.085 

 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

𝛽 = 1 1.130 1.132 1.128 1.122 1.112 1.107 1.103 1.097 

 (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.004) 

𝜎1
2 = 0.15  0.470 0.455 0.438 0.421 0.334 0.295 0.234 0.115 

 (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.005) 

𝜎2
2 = 0.15  0.351 0.355 0.361 0.361 0.410 0.420 0.439 0.480 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝜎𝛽
2 = 0.15 0.434 0.429 0.422 0.409 0.337 0.296 0.250 0.150 

 (0.003) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.006) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.340 -1.300 -1.262 -1.225 -1.102 -1.070 -1.038 -1.008 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.221 -1.205 -1.192 -1.180 -1.114 -1.092 -1.058 -1.029 

 (0.008) (0.007) (0.007) (0.006) (0.004) (0.004) (0.003) (0.002) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.157 -1.145 -1.150 -1.153 -1.144 -1.138 -1.130 -1.125 

 (0.006) (0.005) (0.006) (0.006) (0.005) (0.005) (0.005) (0.005) 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 1.427 1.167 0.942 0.749 0.262 0.165 0.084 0.015 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.767 0.708 0.651 0.583 0.319 0.232 0.142 0.045 

 (0.016) (0.014) (0.015) (0.011) (0.006) (0.005) (0.003) (0.002) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.498 0.483 0.489 0.470 0.433 0.399 0.379 0.374 

 (0.010) (0.009) (0.011) (0.010) (0.008) (0.008) (0.007) (0.008) 

Like with Tables 4 and 6, Tables 5 and 7 present the Model 3 estimation (i.e., correct specification) results 
and the Model 1 estimation (i.e., restricted 𝜌𝛼 = 0)  results of the Group 3, respectively. By comparing 
Tables 5 and 7, we infer the effects of restricting  𝜌𝛼  on the mixed logit estimates apart from simulation 
bias. Similarly, there are three observations that we would like to point out.  

First, we observe that restricting 𝜌𝛼  does not have a substantive effect on the estimated coefficients 𝛼1, 
𝛼2, and 𝛽. The estimated coefficients in Table 5 and Table 7 are mostly similar to each other. Second 
observation is that in Table 7, when we increase the true correlation 𝜌𝛼  from 0.1 to 0.9, the estimated 

values of 𝜎1
2 and 𝜎2

2 both monotonically decrease from 0.369 (0.004) and 0.374 (0.004) to 0.172 (0.004) 

and 0.179 (0.003), respectively. However, in Table 5, the largest and smallest estimated 𝜎2
2 are 0.392 

(0.004) and 0.383 (0.003), respectively, which is fairly constant compared to the estimated 𝜎2
2 in Table 7. 

Given that the true value in Table 7 is 𝜎2
2 = 0.15, these results suggest that restricting 𝜌𝛼 = 0 decreases 

the bias in the estimated 𝜎2
2, especially when the true 𝜌𝛼  is high.  

However, when we compare the estimated 𝜎𝛽
2 in Table 5 and Table7, the results suggest that restricting 

𝜌𝛼  in the estimation of the mixed logit model negatively affects the estimated 𝜎𝛽
2. Specifically, the 

estimated 𝜎𝛽
2 in Table 7 ranges from 0.377 (0.003) to 0.450 (0.003), however, in Table 5 it only ranges 

from 0.366 (0.003) to 0.382 (0.003). Given that the true value is 𝜎𝛽
2 = 0.15, these results suggest that 

restricting 𝜌𝛼 = 0 increases the bias in the estimated 𝜎𝛽
2. 

Finally, when we compare the estimated WTP parameters between Table 5 and Table 7, we see that 
restricting 𝜌𝛼  substantively increases the bias in the mean and variance of WTP. For instance, in Table 5, 
there are only 7 out of 36 WTP parameters that are separated from their respective true values by more 
than 3 standard errors, with an average distance of 2.1 standard errors. However, in Table 7, there are 32 
estimated WTP parameters that are biased, with an average distance 8.7 standard errors between the 
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true and estimated values. Therefore, we can conclude that omitting 𝜌𝛼  in MSL estimation of the mixed 
logit model, negatively affects the mean and variance of WTP. 

Table 7: Under Specification for Group 3 (Restricted 𝜌𝛼) 
 𝜌𝛼 = 0.1 𝜌𝛼 = 0.2 𝜌𝛼 = 0.3 𝜌𝛼 = 0.4 𝜌𝛼 = 0.5 𝜌𝛼 = 0.6 𝜌𝛼 = 0.7 𝜌𝛼 = 0.8 𝜌𝛼 = 0.9 

𝛼1 = 1 1.110 1.108 1.111 1.109 1.105 1.103 1.099 1.107 1.101 

 (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝛼2 = 1 1.106 1.114 1.116 1.109 1.109 1.102 1.101 1.106 1.100 

 (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) 

𝛽 = 1 1.118 1.124 1.118 1.118 1.113 1.116 1.104 1.111 1.109 

 (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) 

𝜎1
2 = 0.15  0.369 0.364 0.352 0.325 0.315 0.291 0.268 0.226 0.172 

 (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.004) (0.003) (0.004) 

𝜎2
2 = 0.15  0.374 0.365 0.351 0.335 0.307 0.295 0.268 0.227 0.179 

 (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝜎𝛽
2 = 0.15 0.387 0.377 0.386 0.396 0.412 0.413 0.429 0.431 0.450 

 (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.003) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 -1.162 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 0.472 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.147 -1.131 -1.141 -1.133 -1.138 -1.124 -1.133 -1.124 -1.117 

 (0.006) (0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.006) (0.005) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.145 -1.138 -1.145 -1.136 -1.139 -1.124 -1.136 -1.124 -1.117 

 (0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.444 0.411 0.418 0.392 0.407 0.374 0.380 0.345 0.331 

 (0.010) (0.007) (0.009) (0.007) (0.008) (0.007) (0.006) (0.008) (0.006) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.449 0.417 0.416 0.405 0.398 0.377 0.381 0.345 0.334 

 (0.009) (0.007) (0.007) (0.008) (0.007) (0.007) (0.006) (0.007) (0.006) 

 
3.3. Over-specification Bias 

Next, we analyze over-specification bias. Recall that in Table 3 we present the Model 1 estimation (i.e., 
correct specification) results of the Group 1 and analyze simulation bias. In Table 8, we present the Model 
2 estimation (i.e., unrestricted 𝜌𝛽 ≠ 0) results for the Group 1. By comparing Tables 3 and 8, we infer the 

effects of unrestricting 𝜌𝛽 on the mixed logit estimates apart from simulation bias. 

There are three observations that we would like to point out. The first observation relates to the estimated 

coefficients 𝛼1, 𝛼2, and 𝛽. The second observation is related to the estimated variances 𝜎2
2 and 𝜎𝛽

2, as 

well as to the estimated correlation 𝜌𝛽. Finally, we analyze the effects on the estimated WTP parameters.  

First, notice that the estimated coefficients 𝛼1, 𝛼2 and 𝛽 are biased in all nine columns presented in Table 
8. However, these biases are not notably different than those presented in Table 3, which suggests that 
unrestricted 𝜌𝛽 ≠ 0 does not substantively affect the estimated coefficients 𝛼1, 𝛼2 and 𝛽.  

Second, when we compare the estimated variances 𝜎2
2 and 𝜎𝛽

2 between Table 3 and Table 8, we can see 

that the estimated values in two tables share similar ranges. For instance, the estimated 𝜎2
2 in Table 8 

ranges between 0.206 (0.010) and 0.503 (0.004). In Table 3, the estimated 𝜎2
2 ranges between 0.213 

(0.005) and 0.500 (0.004). Similarly, the estimated 𝜎𝛽
2 in Table 8 ranges from 0.340 (0.015) to 0.377 

(0.004), while in Table 3 it ranges from 0.364 (0.011) to 0.380 (0.003). These results suggest that there 
may be slight differences in the estimated variances when we allow 𝜌𝛽 ≠ 0.   

When we analyze the estimated 𝜌𝛽, we see that MSL produces biased results in some columns of Table 

8. Specifically, in 5 out of 9 columns of Table 8, the estimated 𝜌𝛽 is separated from 0 by more than 3 

standard errors. For instance, when the true variances are 𝜎1
2 = 𝜎𝛽

2 = 0.15 and 𝜎2
2 = 0.05, the estimated 

𝜌𝛽 is −0.029 (0.012), which is within 3 standard errors from its true value 𝜌𝛽 = 0. However, when the 

true variances are 𝜎1
2 = 0.05, 𝜎2

2 = 0.25 and 𝜎𝛽
2 = 0.15, the estimated 𝜌𝛽 is −0.123 (0.020), which is 
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separated from its true value by more than 6 standard errors. Analysts may erroneously infer correlation 
due to over-specification.   

Finally, although it seems like there are only slight differences in the estimated coefficients and variances 
of Table 3 and Table 8, those small differences add up and substantively affect the estimated WTP 
parameters in Table 8. Specifically, all 36 estimated WTP parameters in Table 3 are within 3 standard 
errors from their respective true values. However, in Table 8, 13 out of 36 estimated WTP parameters are 
separated from their true values by more than 3 standard errors, with and average distance of 5.83 
standard errors between the true and estimated values. In other words, over-specification may cause 
biases in WTP estimates. 

Like with Table 8, Table 9 present the Model 3 estimation (i.e., unrestricted 𝜌𝛼 ≠ 0)  results of the Group 
1. By comparing Tables 3 and 9, we infer the effects of unrestricting  𝜌𝛼  on the mixed logit estimates apart 
from simulation bias. The results generally confirm that findings from Table 8 namely that allowing 𝜌𝛼 ≠

0 does not substantively affect the estimated coefficients 𝛼1, 𝛼2 and 𝛽 or the estimated variances 𝜎2
2 and 

𝜎𝛽
2, but over-specification may cause biases in the WTP estimates. 

Table 8: Over-specification Bias for Group 1 (Unrestricted 𝜌𝛽) 

 

𝜎1
2 = 0.05 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝛼1 = 1 1.115 1.108 1.112 1.112 1.104 1.107 1.117 1.108 1.108 

 (0.003) (0.004) (0.005) (0.003) (0.004) (0.004) (0.003) (0.004) (0.005) 

𝛼2 = 1 1.117 1.107 1.115 1.115 1.107 1.110 1.122 1.113 1.108 

 (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) 

𝛽 = 1 1.121 1.113 1.114 1.120 1.112 1.109 1.123 1.113 1.119 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) 

𝜎2
2  0.222 0.229 0.206 0.386 0.387 0.388 0.497 0.490 0.503 

 (0.003) (0.006) (0.010) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) 

𝜎𝛽
2  0.374 0.376 0.356 0.367 0.377 0.376 0.340 0.374 0.374 

 (0.003) (0.003) (0.013) (0.004) (0.004) (0.004) (0.015) (0.004) (0.004) 

𝜌𝛽 = 0 -0.060 -0.029 -0.058 -0.097 -0.042 -0.038 -0.123 -0.053 -0.042 

 (0.015) (0.012) (0.013) (0.020) (0.014) (0.012) (0.020) (0.015) (0.014) 

True 𝐸(𝑊𝑇𝑃𝛼1
) -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.105 -1.105 -1.105 -1.162 -1.162 -1.162 -1.221 -1.221 -1.221 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.270 0.472 0.734 0.270 0.472 0.734 0.270 0.472 0.734 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.270 0.270 0.270 0.472 0.472 0.472 0.734 0.734 0.734 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.159 -1.158 -1.167 -1.160 -1.157 -1.163 -1.167 -1.160 -1.153 

 (0.004) (0.005) (0.007) (0.005) (0.006) (0.007) (0.005) (0.005) (0.008) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.097 -1.098 -1.105 -1.150 -1.154 -1.161 -1.213 -1.214 -1.208 

 (0.005) (0.005) (0.004) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.487 0.473 0.500 0.498 0.482 0.488 0.521 0.485 0.478 

 (0.010) (0.009) (0.012) (0.012) (0.010) (0.012) (0.013) (0.010) (0.014) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.255 0.266 0.266 0.442 0.461 0.466 0.701 0.699 0.719 

 (0.005) (0.005) (0.005) (0.008) (0.009) (0.010) (0.016) (0.016) (0.017) 

 
Table 9: Over-specification Bias for Group 1 (Unrestricted 𝜌𝛼) 

 

𝜎1
2 = 0.05 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.05 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.15 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.05 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.15 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝜎1
2 = 0.25 

𝜎2
2 = 0.25 

𝜎𝛽
2 = 0.15 

𝛼1 = 1 1.118 1.111 1.118 1.116 1.107 1.110 1.122 1.112 1.112 

 (0.003) (0.004) (0.005) (0.003) (0.004) (0.005) (0.003) (0.004) (0.005) 

𝛼2 = 1 1.118 1.107 1.118 1.115 1.107 1.111 1.122 1.114 1.106 

 (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005) 

𝛽 = 1 1.121 1.114 1.116 1.121 1.115 1.112 1.125 1.115 1.121 

 (0.003) (0.003) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) 

𝜎2
2  0.227 0.239 0.220 0.391 0.390 0.392 0.499 0.494 0.502 

 (0.004) (0.004) (0.008) (0.004) (0.005) (0.004) (0.005) (0.005) (0.004) 

𝜎𝛽
2  0.376 0.375 0.370 0.374 0.380 0.376 0.357 0.378 0.374 

 (0.003) (0.003) (0.008) (0.003) (0.003) (0.004) (0.013) (0.004) (0.004) 

𝜌𝛼 = 0 0.059 0.057 0.076 0.052 0.036 0.056 0.029 0.031 0.001 

 (0.020) (0.017) (0.017) (0.018) (0.016) (0.014) (0.018) (0.013) (0.013) 
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True 𝐸(𝑊𝑇𝑃𝛼1
) -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 -1.105 -1.162 -1.221 

True 𝐸(𝑊𝑇𝑃𝛼2
) -1.105 -1.105 -1.105 -1.162 -1.162 -1.162 -1.221 -1.221 -1.221 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.270 0.472 0.734 0.270 0.472 0.734 0.270 0.472 0.734 

True 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.270 0.270 0.270 0.472 0.472 0.472 0.734 0.734 0.734 

Est. 𝐸(𝑊𝑇𝑃𝛼1
) -1.155 -1.155 -1.162 -1.153 -1.151 -1.158 -1.156 -1.156 -1.149 

 (0.004) (0.005) (0.007) (0.005) (0.006) (0.007) (0.005) (0.005) (0.008) 

Est. 𝐸(𝑊𝑇𝑃𝛼2
) -1.100 -1.099 -1.107 -1.153 -1.154 -1.161 -1.217 -1.216 -1.202 

 (0.005) (0.005) (0.005) (0.006) (0.006) (0.006) (0.008) (0.007) (0.007) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼1
) 0.455 0.453 0.464 0.451 0.458 0.460 0.460 0.460 0.452 

 (0.006) (0.006) (0.008) (0.007) (0.007) (0.009) (0.007) (0.007) (0.009) 

Est. 𝑉𝑎𝑟(𝑊𝑇𝑃𝛼2
) 0.262 0.269 0.272 0.459 0.469 0.473 0.732 0.716 0.710 

 (0.005) (0.005) (0.006) (0.009) (0.010) (0.011) (0.020) (0.016) (0.016) 

4. Discussion 
The evidence from this simulation study suggests that the MSL estimator will produce biased estimates of 
the mean coefficients, their variances and correlations irrespective of the underlying specification of the 
unobserved heterogeneity. These results suggest that the correct specification of the mixed logit model 
(i.e., simulation specification is the same as estimator specification) does not substantively mitigate biases 
in the estimated coefficients. However, a correctly specified mixed logit model can provide relatively 
accurate estimates of the WTP parameters. Restricting or unrestricting correlations erroneously can lead 

to further biases, particularly in the estimated variances (i.e., 𝜎2
2 and 𝜎𝛽

2 ) as well as the estimated mean 

and variance of WTP.  

Before estimating the mixed logit model based on the empirical DCE data, we highly recommend that 
choice modellers conduct simulations based on their intended specifications to assess the potential extent 
of simulation biases before relying on the MSL estimates of mixed logit parameters, particularly their 
variances and correlations. For example, some analysts may allow all parameters to be random and 
correlated; however, the findings from this paper may cast doubt about whether MSL estimators can 
reproduce results accurately. 

To better illustrate the implication of these findings, we created a series of three plots comparing the true 
and estimated (𝑊𝑇𝑃𝛼1

) for 500 Halton draws. In health preference research, often the primary aim is to 

estimate maximum acceptable risk (MAR) parameters or value sets on a quality-adjusted life year scale, 
instead of monetary units. These statistics are mathematically equivalent to 𝐸(𝑊𝑇𝑃𝛼1

).   

Starting with Group 1 (No Patterns; Figure 1),  the true 𝐸(𝑊𝑇𝑃𝛼1
) is represented with a black dot, and 

the estimated 𝐸(𝑊𝑇𝑃𝛼1
) for the Model 1, Model 2 and Model 3 methods are represented with blue, red 

and green dots, respectively. This plot illustrates that the correct specification of the mixed logit (i.e., 
Model 1) produces relatively better estimates of 𝐸(𝑊𝑇𝑃𝛼1

) than the two over-specified models (Models 

2 and 3).  In Group 2 (Figure 2), the correct specification of the mixed logit (i.e., Model 2) again produces 
relatively better estimates of 𝐸(𝑊𝑇𝑃𝛼1

) than the under-specified model (Model 1), depending on the 

extent of the correlation 𝜌𝛽.  

The simulation biases may seem negligible in Groups 1 and 2, but the bias increases in Group 3 
(substitution patterns), depending on the extent of the correlation 𝜌𝛼. Furthermore, erroneously 
restricting the correlation to zero (Model 1) leads to substantive under-specification biases in 𝐸(𝑊𝑇𝑃𝛼1

) 

regardless of the correlation. For analysts, we infer two additional lessons from Figure 3. Its simulation 
bias may be due to the binary nature of the data. Even when the model is correctly specified, controlling 
for the correlation between alternative specific constants may be challenging due to insufficient 
variability. Lastly, any choice task that includes an opt-out, status quo, or referent alternative likely has 
substitution patterns (e.g., a red bus may substitute for blue bus along the same route), and added care 
in the estimation of WTP is warranted due to potential simulation and under specification biases.  
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According to Palma et al. (2020), 72% among 150 papers indexed in the Research Papers in Economics 
(RePEc) produced in the period of 2008-2018 use less than 500 Halton draws, and only 5.6% use more 
than 2000 Halton draws. In this paper, we likewise used 500 Halton draws to be consistent with the levels 
used in the leading MSL applications.   

Czajkowski and Budziński (2019) found that Halton draws are the second best performing quasi-random 
numbers after Sobol draws, and they suggested that approximately 2000 Halton draws (or 1170 Sobol 
draws) are necessary to have a Minimum Tolerance Level of 5% in a setting with 400 individuals, 4 choice 
tasks per individual, 3 alternatives, and 5 random parameters. Our DCE design consists of 200 individuals, 
25 choice tasks per individual, 3 alternatives and only 2 random parameters. Therefore, for a robustness 
test, we believe that 3000 Halton draws would be sufficient. However, our analysis with 3000 Halton 
draws did not identify substantive differences, which may be an indicator of that our initial choice of the 
number of Halton draws (i.e., 500) is sufficient. The results with 3000 Halton draws can found in the 
Supplementary Materials.  

In summary, Table 10 provides the average percentage distance between the true and estimated 
𝐸(𝑊𝑇𝑃𝛼1

) and their ranges for 500 and 3000 Halton draws. On average, the simulation bias is less than 1 

percent and misspecification biases ranged from 2.5 to 3.6 percent. In our previous simulation study 
(Jumamyradov et al., 2023) we showed that the conditional logit parameter estimates (𝛼1, 𝛼2 and 𝛽) may 
be biased depending on the structure of unobservable heterogeneity. Consequently, biases in the 
estimated parameters affect the estimated WTP, causing the WTP to be underestimated up to 20%. In 
combination with the results from this paper, some researchers may estimate the conditional logit model 
when their main interest is the coefficients, and estimate the mixed logit model when their main interest 
is WTP or similar parameters (e.g., quality-adjusted life years).  

Table 10: Average Percentage Difference between the True and Estimated 𝐸(𝑊𝑇𝑃𝛼1
) and Their Ranges. 

500 Halton draws 

 Group 1 
No Patterns: 𝜌𝛽 = 𝜌𝛼 = 0 

Group 2 
Taste: 𝜌𝛽 ≠ 0, 𝜌𝛼 = 0 

Group 3 
Substitution: 𝜌𝛽 = 0, 𝜌𝛼 ≠ 0 

Model 1 
  No Patterns: 𝜌𝛽 = 𝜌𝛼 = 0 

Simulation bias: 
0.795 [0.000, 1.979] 

Under-specification bias: 
 3.315 [0.087, 8.881] 

Under-specification bias: 
2.496 [1.291, 3.873] 

Model 2 
  Taste: 𝜌𝛽 ≠ 0, 𝜌𝛼 = 0 

Over-specification bias: 
3.593 [0.172, 6.540] 

Simulation bias: 
0.655 [0.087, 1.849] 

 

Model 3 
  Substitution: 𝜌𝛽 = 0, 𝜌𝛼 ≠ 0 

Over-specification bias: 
3.587 [0.090, 6.627] 

 Simulation bias: 
0.833 [0.086, 2.065] 

3000 Halton draws 
Model 1 
  No Patterns: 𝜌𝛽 = 𝜌𝛼 = 0 

Simulation bias: 
0.678 [0.082, 1.201] 

Under-specification bias: 
 3.201 [0.036, 9.269] 

Under-specification bias: 
2.421 [0.051, 3.886] 

Model 2 
  Taste: 𝜌𝛽 ≠ 0, 𝜌𝛼 = 0 

Over-specification bias: 
3634 [0.182, 7.135] 

Simulation bias: 
0.523 [0.001, 1.369] 

 

Model 3 
  Substitution: 𝜌𝛽 = 0, 𝜌𝛼 ≠ 0 

Over-specification bias: 
3.585 [0.014, 7.148] 

 Simulation bias: 
0.768 [0.198, 1.518] 

 
There are three primary limitations of this simulation study. First, the design of this DCE was selected for 
its simplicity and ability to mimic uninformative and informative heterogeneity, including taste and 
substitution patterns. The DCE is based on a single full-factorial design with three alternatives, 200 
respondents and 25 choice sets. Its parsimonious model contained a constant term and a single variable 
for each alternative. It is unclear what would come out of a much larger study of a more complicated 
design and model, similar to the ones researchers ultimately intend to use. Nevertheless, the results 
suggest that the use of the mixed logit (when correctly specified) estimates WTP well, but not variances 
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and correlations. Further MSL implications along other purposes, such as market shares and substitution 
effects, are left for another day. Second, the data generation process in this study used only lognormal 
random parameters. Alternative distributions (e.g., symmetric or discrete) may lead to different results. 
Further work is necessary to investigate the implications of different distributions assumptions. Third, our 
specifications of unobservable heterogeneity allow only for interpersonal heterogeneity, however, some 
analysts may wish to account for both heterogeneity and intrapersonal variability (i.e., variability in a 
person’s parameters across tasks).  

5. Conclusion 
In this study, we illustrate the extent of biases in MSL estimates of mixed logit coefficients, variances and 
correlations using a standard DCE. We found that while estimating the mixed logit model with its correct 
specification may have little to none implications on the estimated WTP parameters, erroneously 
restricting or unrestricting correlations may lead up to 9% difference in the true and estimated WTP. 
Simulation and under specification biases are particularly detrimental to WTP estimates when alternative-
specific constants are correlated (substitution patterns).  Based on these findings, choice modellers may 
conduct similar simulations of their own DCE and assess the potential implications of these biases before 
relying on the MSL estimates of mixed logit parameters, particularly their variances and correlations. 

 
Figure 1: 𝐸(𝑊𝑇𝑃𝛼1

) by Model Specification in the Group 1 (no Pattern). 
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Figure 2: 𝐸(𝑊𝑇𝑃𝛼1

) by Model Specification in the Group 2 (Taste Patterns). 

 
Figure 3:  𝐸(𝑊𝑇𝑃𝛼1

) by the Model Specification in the Group 3 (Substitution Patterns). 
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Appendix A: Experimental Design 

The full-factorial design includes five out-of-pocket price levels {0.1, 0.4, 0.9, 1.6, 2.5}. Each individual 
𝑖 = 1, … 𝑁 faced the same alternatives in each of the 25 choice situation 𝑡 = 1, … , 𝑇.  

 

Table A1: Out-of-pocket price 

t Alt. 1 Alt. 2 Alt. 3 

1 0.1 0.1 0 

2 0.1 0.4 0 

3 0.1 0.9 0 

4 0.1 1.6 0 

5 0.1 2.5 0 

6 0.4 0.1 0 

7 0.4 0.4 0 

8 0.4 0.9 0 

9 0.4 1.6 0 

10 0.4 2.5 0 

11 0.9 0.1 0 

12 0.9 0.4 0 

13 0.9 0.9 0 

14 0.9 1.6 0 

15 0.9 2.5 0 

16 1.6 0.1 0 

17 1.6 0.4 0 

18 1.6 0.9 0 

19 1.6 1.6 0 

20 1.6 2.5 0 

21 2.5 0.1 0 

22 2.5 0.4 0 

23 2.5 0.9 0 

24 2.5 1.6 0 

25 2.5 2.5 0 

  



 

21 
 

References 

Brownstone, D. and K. Train (1999). 'Forecasting new product penetration with flexible 

substitution patterns.' Journal of Econometrics, 89, 109-129. 

Campbell, D. and S. Erdem (2019). 'Including opt-out options in discrete choice experiments: 

issues to consider.' The Patient-Patient-Centered Outcomes Research 12/1, 1-14. 

Clark, M. D., Determann, D., Petrou, S., Moro, D., and de Bekker-Grob, E. W. (2014). ‘Discrete 

choice experiments in health economics: a review of the literature.’ Pharmacoeconomics, 32(9), 883-

902. 

Craig, B. M., Lancsar, E., Mühlbacher, A. C., Brown, D. S., and Ostermann, J. (2017). ‘Health 

preference research: an overview.’ The Patient-Patient-Centered Outcomes Research, 10, 507-510. 

Craig, B. M., de Bekker-Grob, E. W., González Sepúlveda, J. M., and Greene, W. H. (2022). ‘A 

guide to observable differences in stated preference evidence.’ The Patient-Patient-Centered Outcomes 

Research, 15(3), 329-339.  

Czajkowski, M., and Budziński, W. (2019). Simulation error in maximum likelihood estimation of 

discrete choice models. Journal of choice modelling, 31, 73-85. 

Daly, A., Hess, S., and Train, K. (2012). Assuring finite moments for willingness to pay in random 

coefficient models. Transportation, 39, 19-31. 

Gonzalez, J. M. (2019). ‘A guide to measuring and interpreting attribute importance.’ The 

Patient-Patient-Centered Outcomes Research, 12(3), 287-295. 

Gourieroux, C. and A. Monfort (1990). ‘Simulation based inference in models with 

heterogeneity’. Annales d’Economie et de Statistique, 69–107. 

Greene, William H. (2012), ‘Econometric analyses’. 7th edition, Prentice Hall, Upper Saddle 

River, NJ. 

Hajivassiliou, V. A. and P. A. Ruud (1994). ‘Classical estimation methods for LDV models using 

simulation.’ Handbook of econometrics, 4, 2383–2441. 

Hensher, D., Rose J., W. H. Greene (2005). 'Applied choice analysis: a primer'. Cambridge 

university press. 

Hossain, I., Saqib, N. U., and Haq, M. M. (2018). ‘Scale heterogeneity in discrete choice 

experiment: An application of generalized mixed logit model in air travel choice’. Economics 

Letters, 172, 85-88.  

Jumamyradov, M., B. Craig, M. Munkin, and W. Greene (2023). ‘Comparing the conditional logit 

estimates and true parameters under preference heterogeneity: a simulated discrete choice 

experiment’. Econometrics, 11 (1), 4. 

Jumamyradov, M., and Munkin, M. K. (2022). ‘Biases in Maximum Simulated Likelihood 

Estimation of Bivariate Models.’ Journal of Econometric Methods, 11(1), 55-70. 

Lee, L. (1995). ‘Asymptotic bias in simulated maximum likelihood estimation of discrete choice 

models’. Econometric Theory, 437–483. 

Marschak, J., (1960). 'Binary choice constraints on random utility indicators', in K. Arrow, ed., 

Stanford Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, 

Stanford, CA, 312-329 

McFadden, D. (1974).’ Conditional logit analysis of qualitative choice behavior’, in P. Zarembka, 

ed., Frontiers in Econometrics, Academic Press, New York, 105-142. 

McFadden, D. and K. Train (2000). 'Mixed MNL models of discrete response'. Journal of Applied 

Econometrics 15, 447-470. 



 

22 
 

Palma, M. A., Vedenov, D. V., and Bessler, D. (2020). The order of variables, simulation noise, 

and accuracy of mixed logit estimates. Empirical Economics, 58, 2049-2083. 

Quandt, E. Richard. 1970. The Demand for Travel: Theory and Measurement. Lexington, MA: D.C. 
Heath and Company. 

Revelt, D. and K. Train (1998). 'Mixed logit with repeated choices'. Review of Economics and 

Statistics 80, 647–657. 

Soekhai, V., de Bekker-Grob, E. W., Ellis, A. R., and Vass, C. M. (2019). ‘Discrete choice 

experiments in health economics: past, present and future.’ Pharmacoeconomics, 37(2), 201-226. 

Train, K., (2009). 'Discrete choice methods with simulation'. Cambridge university press. 

 

 


