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Abstract

An identification problem with the Multinomial Probit Model arises when cor-
relations among choice alternatives are weak. Then even if formal conditions for
model identification are satisfied, practical estimation of the unrestricted variance
parameters is tenuous. An estimable specification of the model, in which all vari-
ance parameters are fixed, resolves the problem. This paper demonstrates the
identification problem and presents an MCMC algorithm to estimate this restricted
specification of the Multinomial Probit model.
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1. Introduction

Parameter identification in the Multinomial Probit (MNP) model can be tenuous even if

formal identification conditions are satisfied as shown by Keane (1992). Specifically, the

log-likelihood function in the MNP model is flat in the absence of exclusion restrictions.

This paper presents yet another identification problem which occurs in the presence of

weak correlation. Then identification of the unrestricted variance parameters is diffi cult

in the same sense that the log-likelihood function does not change much for a wide

range of variance values. A possible solution to this problem is to present an estimable

specification of the MNP model which restricts all variance parameters. This paper

develops an MCMC estimation method for the restricted MNP model and shows that it

produces Markov chains with good mixing properties uniform across different parameter

values and numbers of alternatives.

The MNP model was introduced by Aitchison and Bennett (1970) to model choices

among several alternatives, which cannot be ranked uniformly for all individuals from

most preferred to least. Since the observed outcomes are defined by differences in levels

of unobservable random utility, not all parameters may be identified. Several alternative

identification restrictions are possible, as presented, for example, by Bunch (1991). It is

customary for formal identification to normalize the utility of one alternative to 0 and

restrict one variance parameter of the covariance matrix to 1. Heckman and Sedlacek

(1985) find that for formal identification in the trinomial probit model (TPM) it is also

necessary that the linear-in-parameters latent utility contains a single regressor that

varies over individuals.

Keane (1992) raises a very important question of practical estimability of the MNP

model in the cases when formal identification restrictions are satisfied, and shows that

in the absence of exclusion restrictions, identification in the TPM model is fragile in the

sense that the objective function is flat with respect to the parameters of the covariance
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matrix. Practical identification, however, has no problem in the presence of exclusion re-

strictions. This restriction might be just a single case among several identification issues

in practice caused by different reasons. For example, Bunch and Kitamura (1991) point

out that the flexible covariance structure of the MNP model requires "huge datasets"

as the number of alternatives increases, but the issue of overparametrization is an open

research question. McCulloch et al. (2000) present an MCMC estimation method for

the MNP model, but find that in some cases of high dimensions and situations, when

the likelihood is not very informative, their Markov chains fail to converge. They do

not provide additional details on such cases. This paper shows that even in the case

of the TPM model of low dimension when correlation is weak (ρ 6 0.2), the algorithm

of McCulloch et. al (2000) fails to converge with only one covariance and one variance

parameter. This convergence problem is caused by fragile identification occurring when

the log-likelihood function is flat with respect to the variance parameter in the presence

of weak correlation.

Geweke et al. (1994) compare several approaches to inference in the MNP model

including simulated maximum likelihood, method of simulated moments and Gibbs

sampling with data augmentation and find that the Gibbs sampling algorithm performs

relatively better. Bayesian MCMC estimation algorithms of the MNP model include

Albert and Chib (1993), McCulloch and Rossi (1994), Nobile (1998), McCulloch et al.

(2000), Nobile (2000), Imai and van Dyk (2005) and Burgette and Nordheim (2012).

McCulloch and Rossi (1994) estimate the MNP model without placing any identifica-

tion restrictions on the covariance matrix, specifying a single Wishart prior for both

identifiable and unidentifiable parameters, which means that a direct improper prior

on the identifiable parameters is not possible. McCulloch et al. (2000) use a repara-

metrization that allows to make an identifying restriction and specify improper priors

on the identifiable parameters. The produced Markov chains, however, are somewhat

tenuous to converge. As reported by McCulloch et al. (2000) and Nobile (2000), the
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MCMC algorithm can be much slower to converge than either the procedure of Mc-

Culloch and Rossi (1994) or Nobile (1998). Imai and van Dyk (2005) introduce a set

of MCMC algorithms based on the method of marginal data augmentation to estimate

the MNP model. The produced algorithm has better computational properties in terms

of autocorrelations and sensitivity to starting values. Burgette and Nordheim (2012)

offer a different identification strategy of the MNP model, in which instead of fixing a

diagonal element of the covariance matrix they restrict its trace. The mixing properties

of the algorithm are reported to be similar to those of Imai and van Dyk (2005).

The rest of the paper is organized as follows. Section 2 designs a numerical example

to show that the unrestricted variance parameter is diffi cult to identify in the presence

of weak correlation in the trinomial specification of the MNP model. Section 3 restricts

the variance parameter, develops an MCMC procedure for the restricted TPM model

and compares it with the algorithm of McCulloch et al. (2000). Section 4 introduces an

estimable specification of the MNP model with any number of alternatives, restricting

all variance parameters, and develops an MCMC procedure for the general case. Section

5 concludes.

2. Weak Correlation in the TPM model

This section describes an identification problem in the TPM model that arises when the

correlation parameter in the covariance matrix is small in value (ρ 6 0.2). To provide

evidence of fragile identification I construct a numerical example designed in a similar

way to Keane (1992), who specifies latent utilities Z1i and Z2i as

Z1i = X1iα1 + u1i, (2.1)

Z2i = X2iα2 + u2i,

where X1i and X2i are different vectors of covariates, α1 and α2 are conformable para-

meter vectors and N observations are independent over i (i = 1, ..., N). Latent utility Z3
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is restricted for identification to zero (Z3 ≡ 0). The errors (u1i, u2i) are independently

and identically distributed as N (0,Σ) where

Σ =

(
1 ρσ2
ρσ2 σ22

)
and variance parameter σ1 is restricted to 1 for identification since Z1i and Z2i are

latent. The observed outcome variables d1i, d2i, d3i are defined as

d1i = 1 if and only if Z1i > Z2i, Z1i > 0,

d2i = 1 if and only if Z2i > Z1i, Z2i > 0,

d3i = 1 if and only if Z1i < 0, Z2i < 0.

The probabilities of these outcomes can be expressed as bivariate integrals. Denote

bivariate probability

Pr (X 6 x, Y 6 y) = Φ (x, y, ρ)

where random variables X and Y are distributed bivariate normal

(X,Y ) ∼ N
(

(0, 0) ,

(
1 ρ
ρ 1

))
.

Then

Pr (d1i = 1) = Pr (Z1i > Z2i;Z1i > 0) = Φ

(
X1iα1 −X2iα2√
σ22 + 1− 2σ12

, X1iα1,
1− σ12√

σ22 + 1− 2σ12

)
,

Pr (d2i = 1) = Pr (Z2i > Z1i;Z2i > 0) = Φ

(
X2iα2 −X1iα1√
σ22 + 1− 2σ12

,
X2iα2
σ2

,
σ22 − σ12

σ2
√
σ22 + 1− 2σ12

)
,

Pr (d3i = 1) = Pr (Z1i < 0;Z2i < 0) = Φ

(
−X1iα1,

−X2iα2
σ2

,
σ12
σ2

)
.

Most statistical packages have very effi cient procedures to numerically calculate bivariate

integrals Φ (x, y, ρ) , which do not have a closed form solution. These expressions are

used in the maximum likelihood (ML) programs for the probabilities of the observed

outcomes in the TPM model.
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The ML programs estimating the TPM model, used in this paper, have been tested

with data, generated according to Keane (1992) such that N = 8000, X1i ∼ N (6, 5) ,

X2i ∼ N (6, 5) , α1 = (−0.8, 0.2) , α2 = (−2.0, 0.4) , ρ = 0.6, σ2 = 1.5. However,

in my model specification parameter σ12 = ρσ2 is used instead of ρ. The obtained

results produce a similar conclusion that the log-likelihood function does not change

much for a range of different values of covariance parameters σ12 and σ22 when X1i

and X2i are restricted to be the same. Next, I generate zero correlation data with the

following specification: N = 8000, X1i ∼ N (4, 5) , X2i ∼ N (4, 5) , α1 = (−0.8, 0.2) ,

α2 = (−2.0, 0.4) , ρ = 0, σ2 = 1.5. The true value ρ = 0.6 in Keane (1992) produces

outcomes with approximately equal relative frequencies. However, when ρ is restricted

to zero the generated proportions are far from being equal. The adjustment in drawing

X1 and X2 as N (4, 5) instead of N (6, 5) produces approximately equal proportions of

observations in each of the three choice groups.

Table 1 presents estimation results for several specifications. The true values of all

parameters in the data generating process are given in the column titled "True Value".

The column titled "ML" presents maximum likelihood estimates of the TPM model

with no restrictions imposed on the log-likelihood function. The numbers in the first

rows are the ML estimates, and the second rows are the corresponding standard errors.

Additionally, restricted ML estimates of the TPM model, fixing parameter σ2 to a range

of values from 1.3 to 2.9, are given in columns (1) to (5). The estimated log-likelihood

values are presented in the row titled "log L̂". To test these restrictions the last row of

the table reports the likelihood ratio (LR) test statistic log L̂U− log L̂R (U and R stand

for unrestricted and restricted). The critical value of the test statistic at 10% level of

significance is χ20.1 (1) = 2.706, so that the null hypothesis that the restriction of σ2 is

valid cannot be rejected for all cases presented in Table 1.

Figure 1 shows how the restricted log-likelihood (the red line) deteriorates from the

unrestricted maximum when variance parameter σ2 is fixed at values changing from 1
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to 3 in increments of 0.1. The same log-likelihood values are also given in Table 2 in the

column titled "ρ = 0". The unrestricted model produces log L̂ML = −7764.17 with the

ML estimate σ̂2,ML = 1.85 (0.30), where the red line is maximized. The lower bound

for the log-likelihood values, above which validity of σ2 restriction cannot be rejected,

is log L̂ML − χ20.1 (1) = −7766.87 (the blue line). The corresponding "no rejection"

interval in this case is [1.3, 2.9]. It is defined with respect to σ2 and referred to as "LR

interval" in Table 2 with the lower and upper bounds rounded up to 0.1. The log-

likelihood values corresponding to this interval in Table 2 are in boldface. The left tail

of the log-likelihood function (the red line) around the ML estimate σ̂2,ML is relatively

shorter with values decreasing fast, however, the right tail persists being above the

critical value much longer. Since parameter σ2 is formally identified it produces some

slight deteriorations of the objective function, however, it remains relatively "flat" for

a very large range of values, [1.3, 2.9]. Given that σ̂2,ML = 1.85 (0.30) when the true

value is σ2 = 1.5, the fact that the restriction σ2 = 2.9 cannot be rejected is a sign that

identification of σ2 in practice is diffi cult.

The shapes of the log-likelihood functions change with larger values of ρ. Figures

2 and 3 present them for the cases when ρ = 0.6 and ρ = 0.9 respectively. Table 2

also provides estimates of the corresponding log-likelihoods. The unrestricted maximum

likelihood estimates σ̂2,ML = 1.65 (0.17) and σ̂2,ML = 1.61 (0.11)move closer to the true

value of 1.5 with standard deviations becoming markedly smaller. Thus, ML estimates

of the variance parameter become more precise. The "no rejection" LR intervals narrow

to [1.4, 2.1] and [1.4, 1.8] respectively. The right tails shorten and the shapes become

more symmetric with a distinct maximum.

The null hypothesis for validity of the restrictions for the variance parameter σ2 can

also be tested based on the asymptotic normality of the maximum likelihood estimator

σ̂2,ML, centered at 1.61 with standard deviation 0.11 when ρ = 0.9. Then, a confidence

interval at 10% level of significance can be estimated as 1.61 ± z0.05 × 0.11 . Table
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2 refers to such intervals estimated based on asymptotic normality as "ML intervals".

Rounding the lower and upper bounds up to 0.1 results in [1.4, 1.8]. Thus, in the case

when ρ = 0.9 both likelihood ratio (LR) and asymptotic normality (ML) approaches

give practically equal estimates. The objective function does not have any signs of being

"flat" and identification of σ2 has no problems.

Due to computational errors and different asymptotic properties of the test statistics

the estimated LR and ML intervals are not expected to be identical. However, if they

differ by a large margin and inference based on them leads to completely different

conclusions, this could be interpreted as a sign of potential identification problems.

In the case when ρ = 0, the no rejection ML interval at 10% level of significance is

[1.4, 2.3], estimated as 1.852±z0.05×0.305, which is substantially narrower than the LR

interval [1.3, 2.9]. A possible explanation for this is that ML optimization and estimated

standard errors are based on the inverse of the Hessian matrix, which produces imprecise

estimates when the objective function flattens.

The next results in Table 2 show that the identification problem is present in other

cases of weak correlation. The no rejection LR intervals [1.4, 2.9] and [1.4, 2.8] for

the cases when ρ = 0.1 and ρ = 0.2, respectively, are not much different from that

of zero correlation. The no rejection ML intervals are substantially smaller, [1.3, 2.4]

and [1.4, 2.3], respectively. The standard errors of σ̂2,ML are as high as in the case of

zero correlation, 0.32 (ρ = 0.1) and 0.30 (ρ = 0.2), indicating that the objective function

remains "flat". Thus, it can be stated that identification of the variance parameter σ2 is

tenuous at least for the cases when ρ 6 0.2, however, identification of σ2 is not a problem

when ρ > 0.8. The cases in between, when 0.2 < ρ < 0.8, produce mixed results. What

is important is the conclusion that for some parameter values consistent with weak

correlation (ρ 6 0.2) identification is diffi cult. This paper offers a practical solution to

this identification problem by presenting an estimable specification of the TPM model,

which fixes all variance parameters including σ2, and extends this specification to the
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MNP model of any number of alternatives.

3. Estimable TPM Specification: MCMC Estimation

First, before presenting an estimable specification of the TPM model, define Σ without

placing any identification restrictions

Σ =

(
σ11 σ12
σ12 σ22

)
.

The joint distribution of latent variables in system (2.1) can be written as the condi-

tional distribution Z1i|Z2i and marginal distribution of Z2i, where Z1i|Z2i ∼ N(X1iα1+

σ12σ
−1
22 (Z2i − X2iα2), σ11 − σ212σ

−1
22 ) and Z2i ∼ N(X2iα2, σ22). Denote φ11 = σ11 −

σ212σ
−1
22 , φ12 = σ12σ

−1
22 , φ22 = σ22. There is a one-to-one correspondence between para-

meters (σ11, σ21, σ22) and (φ11, φ12, φ22). Then the model can be presented as

Z1i = X1iα1 + (Z2i −X2iα2)φ12 + ε1i,

Z2i = X2iα2 + ε2i,

where (
ε1i
ε2i

)
i.i.d.∼ N

(
0,

(
φ11 0
0 φ22

))
.

Now constraints can be imposed on the original variance parameters σ11 and σ22 by

setting φ11 = 1 and φ22 = 1. Then σ11 = 1 + σ212σ
−1
22 and σ22 = 1 are the additional

identifying restrictions. This is the estimable specification of the TPM model.

Next I develop an MCMC algorithm to estimate this restricted model. Denote

di = (d1i, d2i, d3i) and ∆i = (X1i, X2i, α1, α2, φ12). For each observation i the joint

density of the observed data and latent variables is

Pr (Z1i, Z2i, di|∆i) = (2π)−1 exp
[
−0.5 (Z1i −X1iα1 − (Z2i −X2iα2)φ12)2

]
× exp

[
−0.5(Z2i −X2iα2)2

]
×

 3∑
j=1

dji

3∏
k=1

I[0,+∞) (Zji − Zki)

 ,
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where I[0,+∞) is the indicator function for the set [0,+∞). The joint distribution of the

observed and latent variables for all observations is the product of N such independent

terms over i (i = 1, ...N). The posterior density is proportional to the product of the

prior density of the parameters and the joint distribution of the observed and included

latent variables. Proper priors are selected for all parameters. The prior distributions for

parameters α1 (k1 × 1), α2 (k2 × 1) and φ12 (1× 1) are normal N(α1, H
−1
α1 ), N(α2, H

−1
α2 )

and φ12 ∼ N
(
φ,H−1φ

)
respectively, centered at zero with relatively large variance

α1 ∼ N
(
0, 102Ik1

)
, α2 ∼ N

(
0, 102Ik2

)
, φ12 ∼ N

(
0, 102

)
.

The parameter set is blocked as [Z1i, Z2i] , [α1, φ12] and α2. The details of the MCMC

algorithm are given in Appendix A1.

In order to assess performance of the developed MCMC algorithm I utilize the same

zero correlation data set which was generated to produce ML results presented in Table

1. However, for comparison I also estimate the model with unrestricted variance para-

meter σ2, using the MCMC procedure developed by McCulloch et al. (2000) referred to

as the MPR (McCulloch, Polson and Rossi) method. The priors for the MPR method

are specified to be

α1 ∼ N
(
0, 102Ik1

)
, α2 ∼ N

(
0, 102Ik2

)
,

φ12 ∼ N
(
0, 102

)
, σ−12 ∼W (5, 1) .

The MCMC procedure for the restricted model, presented in this section, is referred

to as the M (Munkin) method. The results are given in Table 3 and based on 200,000

replications following 1000 replications of the burn-in phase. The reason for such a

large number of replications is that the Markov chains produced by the MPR method

display very high serial correlations. Since the true value of σ2 in the data generating

process is 1.5 but in the M model it is restricted to 1 the corresponding posterior
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of α2 should be centered around the true values divided with
√

1.5. Figures 4 and

5 present Markov chains and autocorrelation functions up to lag 20 for the slowest to

converge parameters in the M and MPR models respectively. For example, for the MPR

model the levels of autocorrelation function at lag 20 for parameter σ2 is γ20 = 0.97,

and relative numerical effi ciency, RNE = 0.0008. The estimated posterior mean is

3.627 and posterior standard deviation is 1.470. However, other runs of the MPR

algorithm produce Markov chains that center around different posterior means with

different standard deviations. The Markov chain for parameter σ2 fails to converge.

McCulloch et al. (2000) use a tighter prior on parameter φ12 ∼ N (0, 1/8), however,

the MPR algorithm fails to converge in that case as well. This result is consistent

with the conclusion based on the ML estimates, that identification of the unrestricted

variance parameter is tenuous. Inference based on Markov chains with such poor mixing

properties would be unreliable.

It is interesting to notice that Markov chains of the MPR algorithm for parame-

ter vector α1 display reasonable convergence properties, however, for parameter α2 the

autocorrelation function is similar to that of σ2 with the intercept being more serially

correlated than the slope parameter. This is likely caused by poor identification of

the variance parameter σ2 of latent variable Z2 which affects identification of the mean

parameters in Z2. Overall, the Markov chains of the M output have much better conver-

gence properties than those of the MPR algorithm. The covariance parameter σ12 has

the largest lag 20 autocorrelation among all parameters, however, it is at a reasonable

level of γ20 = 0.64 and RNE = 0.012. It is smaller than that of the MPR output for

σ12 with γ20 = 0.77 and RNE = 0.0019.

Next I examine how convergence properties of the Markov chains change as the true

value of ρ is moved away from 0. Data sets are generated for a range of ρ values and

the estimation results are presented in Tables 4 and 5 together with estimates of γ20

and RNE for the M and MPR outputs respectively. Overall, the produced output of
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the M method is consistently similar in its good mixing properties across all ρ values.

The MPR method produces Markov chains with better convergence when ρ > 0.2,

however, the autocorrelations for parameter σ2 are still high. Placing the tighter prior

φ12 ∼ N (0, 1/8) improves the mixing properties of the chains, but only slightly with

γ20 still being above 0.9.

4. Estimable MNP Specification: MCMC Estimation

This section presents an estimable specification of the MNP model with any number of

alternatives and develops an MCMC algorithm to estimate the posterior distribution

of model parameters. Assume that we observe N independent individuals (i = 1, ..., N)

and each individual i makes a choice among J alternatives based on latent utility Zji

(j = 1, ..., J) defined as

Zji = Xjiαj + uji, (4.1)

where Xji is a vector of exogenous regressors specific to individual i and alternative j,

αj is a conformable vector of parameters and uji is the error. Let d1i, d2i, ..., dJi be a

set of binary random variables representing this choice defined as

dji =
J∏
k=1

I[0,+∞) (Zji − Zki) .

Individual i chooses alternative j if utility level Zji exceeds those of the alternatives

in which case dji = 1. Otherwise dji = 0. Even before a formal specification of the

distribution for the errors uji it can be noticed that the probabilities of outcomes dji

depend on pairwise differences Zji − Zki or (αj − αk), such that all parameters αj
(j = 1, ..., J) are not identifiable. For identification it is necessary to restrict one of the

latent utilities to a constant, say ZJ = 0.

The MNPmodel assumes that the distribution of the error term ui =
(
u1i, u2i, ..., u(J−1)i

)′
is (J − 1)-variate normal N (0,Σ) . Once again just like in the TPM case before im-
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posing any additional identifying restrictions specify symmetric matrix Σ without any

constraints

Σ =



σ11 σ12 σ13 ... σ1(J−2) σ1(J−1)
σ12 σ22 σ23 ... σ2(J−2) σ2(J−1)
σ13 σ23 σ33 ... σ3(J−3) σ3(J−1)
... ... ... ... ... ...

σ1(J−2) σ2(J−2) σ3(J−2) ... σ(J−2)(J−2) σ(J−2)(J−1)
σ1(J−1) σ2(J−1) σ3(J−1) ... σ(J−2)(J−1) σ(J−1)(J−1)

 .

Define an 1× (J − j) vector

Σj,12 =
(
σ(j−1)j σ(j−1)(j+1) ... σ(j−1)(J−1)

)
,

and an (J − j)× (J − j) matrix

Σj,22 =


σjj σj(j+1) ... σj(J−1)

σj(j+1) σ(j+1)(j+1) σ(j+1)(J−1)
... ... ...

σj(J−1) σ(j+1)(J−1) ... σ(J−1)(J−1)

 ,

subsets of matrix Σ (j = 2, ..., J − 1). Following Munkin and Trivedi (2008) the joint

distribution of u1i, u2i, u3i, ..., u(J−1)i can be written as

f
(
u1i, u2i, u3i, ..., u(J−1)i

)
= f

(
u(J−1)i

) J−1∏
j=2

f
(
u(j−1)i|uji, u(j+1)i, ..., u(J−1)i

)
where the conditional distributions of u(j−1)i|uji, u(j+1)i, ..., u(J−1)i (j = 2, ..., J − 1) are

N
(

Σj,12Σ
−1
j,22

(
uji, ..., u(J−1)i

)′
, σ(j−1)(j−1) − Σj,12Σ

−1
j,22Σ

′
j,12

)
,

and u(J−1)i ∼ N
(
0, σ(J−1)(J−1)

)
.

Introduce Φ to be a (J − 1)× (J − 1) matrix and define its elements as

φ(j−1)(j−1) = σ(j−1)(j−1) − Σj,12Σ
−1
j,22Σ

′
j,12,(

φ(j−1)j φ(j−1)(j+1) ... φ(j−1)(J−1)
)

= Σj,12Σ
−1
j,22
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and φ(J−1)(J−1) = σ(J−1)(J−1) (j = 2, ..., J − 1). There is a one-to-one correspondence

between parameters in Σ and Φ. Then the equations in (4.1) can be written as

Z1i = X1iα1 + (Z2i −X2iα2)φ12 + ...+
(
Z(J−1)i −X(J−1)iα(J−1)

)
φ1(J−1) + ε1i,

Z2i = X2iα2 + (Zi3 −X3iα3)φ23 + ...+
(
Z(J−1)i −X(J−1)iα(J−1)

)
φ2(J−1) + ε2i,

Z3i = X3iα3 + (Z4i −X4iα4)φ34 + ...+
(
Z(J−1)i −X(J−1)iα(J−1)

)
φ3(J−1) + ε3i,

...

Z(J−2)i = X(J−2)iα(J−2) +
(
Z(J−1)i −X(J−1)iα(J−1)

)
φ(J−2)(J−1) + ε(J−2)i,

Z(J−1)i = X(J−1)iα(J−1) + ε(J−1)i.

where the errors are distributed as

ε1i
ε2i
ε3i
...

ε(J−2)i
ε(J−1)i


i.i.d.∼ N

0,



φ11 0 0 ... 0 0
0 φ22 0 ... 0 0
0 0 φ33 ... 0 0
... ... ... ... ... ...
0 0 0 ... φ(J−2)(J−2) 0

0 0 0 ... 0 φ(J−1)(J−1)



 .

To define the estimable specification of the MNP model I choose the following variance

restrictions: φ(j−1)(j−1) = 1 (j = 2, ..., J). These impose σ(j−1)(j−1) = 1+Σj,12Σ
−1
j,22Σ

′
j,12

(j = 2, ..., J − 1) and σ(J−1)(J−1) = 1 restrictions on the diagonal elements of matrix Σ.

Denote Zi = (Z1i, ..., ZJi) , di = (d1i, ..., dJi) , Xi =
(
X1i, ..., X(J−1)i

)
, α = (α1, ..., αJ−1),

∆i = (Xi, α,Φ). For each observation i the joint density of the observed data and latent

variables is
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Pr (Zi, di|∆i) = (2π)−(J−1)/2

× exp

[
−0.5

(
Z1i −X1iα1 − (Z2i −X2iα2)φ12 − ...−

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ1(J−1)

)2]
× exp

[
−0.5

(
Z2i −X2iα2 − (Z3i −X3iα3)φ23 − ...−

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ2(J−1)

)2]
× exp

[
−0.5(Z3i −X3iα3 − (Z4i −X4iα4)φ34 − ...−

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ3(J−1))

2
]

...

× exp
[
−0.5(Z(J−2)i −X(J−2)iα(J−2) −

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ(J−2)(J−1))

2
]

× exp
[
−0.5(Z(J−1)i −X(J−1)iα(J−1))2

]
×

 J∑
j=1

dji

J∏
k=1

I[0,+∞) (Zji − Zki)

 .
The parameters in the model are blocked as Z1i, Z2i, Z3i, ..., Z(J−2)i, Z(J−1)i,

[
α1, φ12, ..., φ1(J−1)

]
,

α2, α3, ..., αJ−2, αJ−1,
[
φ23, ..., φ2(J−1)

]
,
[
φ34, ..., φ3(J−1)

]
, ...,

[
φ(J−2)(J−1)

]
. The de-

tails of the MCMC algorithm including formal specification of the prior distributions

are given in Appendix A2. However, the priors are chosen to be similar to those in the

TPM model, normally distributed centered at zero and with large variance 102.

Next I examine properties of Markov chains produced by the MCMC algorithm

developed in this section generating data according to the MNP model for the cases

when J = 4 and J = 5 respectively. Once again the numerical examples are chosen

to have data generating specifications similar to those of Keane (1992). Specifically I

select N = 8000, Xji
i.i.d.∼ N (0, 5) , αj = (−0.5, 1) for i = 1, ..., N and j = 1, ..., J − 1.

The true values of the variance and covariance parameters are chosen to be

σ12 = σ13 = σ23 = 0,

σ1 = 1, σ2 = 1.3, σ3 = 1.6
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and

σ12 = σ13 = σ14 = σ23 = σ24 = σ34 = 0,

σ1 = 1, σ2 = 1.2, σ3 = 1.4, σ4 = 1.6

when J = 4 and J = 5 respectively. The selected specifications and parameter val-

ues generate approximately equal numbers of observations in each choice category. The

estimation results are presented in Table 6 which includes the posterior means and stan-

dard deviations, autocorrelation at lag 20 denoted as γ20 and RNE of the parameters.

Posterior means of all covariance parameters are indistinguishable from zeros given the

estimated posterior standard deviations. It must be noted that the posterior means of

parameters αj (j = 1, ..., J − 1) do not have to be centered at (−0.5, 1) since variances

σj in the restricted model are fixed at 1, different from the true values in the data

generating specification.

Assessment of the convergence properties of the produced Markov chains are based

on the values of the autocorrelation function and relative numerical effi ciency. In the

case of the TPM model (Table 3) there is a single covariance parameter σ12 for which

γ20 = 0.64 and RNE = 0.012 in the case when ρ = 0 . Table 4 calculates the same

convergence statistics for a range of ρ values and shows that γ20 for σ12 overall fluctuates

between 0.59 and 0.69. The Markov chains for the cases of J = 4 and J = 5 have similar

convergence properties as in the case of J = 3 with the values of γ20 and RNE being

in the same range, although Table 6 presents results only for a single set of parameter

values when all covariances are restricted to 0. I do not report convergence statistics

similar to those in Table 4 since the number of covariance parameters increases with

J and the quantity of sets of results is large. However, choosing various values for the

covariance parameters produces Markov chains with similar convergence characteristics

as in Table 6. As the number of alternatives in the MNP model increases the mixing

properties of the Markov chains do not deteriorate.
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5. Conclusion

An important conclusion from the work of Keane (1992) is that even though formal

conditions for identification in the MNP model are satisfied, additional restriction might

be necessary for practical identification. This paper finds a practical identification

problem with the MNP model which arises in the presence of weak correlation among

alternatives. This might be a reason why some proposed in the literature Bayesian

estimation methods produce Markov chains that display slow convergence and in some

cases fail to converge as reported, for example, by McCulloch et al. (2000). This

paper presents an estimable specification of the MNP model, restricting all variance

parameters, and develops an MCMC procedure to estimate this restricted specification.

The Markov chain output produced by the estimation procedure shows good mixing

properties consistent with respect to the numbers of alternatives and different parameter

values.
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Appendix A1

The steps of the MCMC algorithm are the following:

1. The latent variable Z1i (i = 1, ...N) is conditionally independent with normal dis-

tribution Z1i
iid∼ N(Z1i, 1) where

Z1i = X1iα1 + (Z2i −X2iα2)φ12,

and subject to

Z1i > max {Z2i, 0} if d1i = 1,

Z1i < max {Z2i, 0} if d1i = 0.

The latent vectors Z2i (i = 1, ...N) are conditionally independent with the normal

distribution Z2i
iid∼ N(Z2i, H

−1
) where

H = 1 + φ212,

Z2i = X2iα2 +H
−1
φ12 (Z1i −X1iα1) ,

and truncated such that

Z2i > max {Z1i, 0} if d2i = 1,

Z2i < max {Z1i, 0} if d2i = 0.

2. Let Wi = (X1i, (Z2i − X2iα2)), θ
′ = (α′1, φ12). Given the prior distribution of

α1 ∼ N(α1, H
−1
α1 ) and φ12 ∼ N

(
φ,H−1φ

)
form the prior for θ ∼ N (θ,H−1θ ) such

that

θ =

(
α1
φ

)
,

Hθ =

(
Hα1 0

0 Hφ

)
.
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Then the full conditional distribution of θ is θ ∼ N(θ,H
−1
θ ) where

Hθ = Hθ +
N∑
i=1

W ′iWi

θ = H
−1
θ

[
Hθθ +

N∑
i=1

W ′iZ1i

]
.

3. Given the prior distribution of α2, N(α2, H
−1
α2 ), the full conditional distribution

of α2 is α2 ∼ N (α2, H
−1
α ) where

Hα2 = Hα +
N∑
i=1

X ′2i(1 + φ212)X2i

α2 = H
−1
α2 [Hα2α2 +

N∑
i=1

X ′2i(1 + φ212)Z2i −X2iφ12 (Z1i −X1iα1) .

This concludes the MCMC algorithm.

Appendix A2

The steps of the MCMC algorithm are the following:

1. The latent variable Z1i (i = 1, ...N) is conditionally independent with normal dis-

tribution Z1i
iid∼ N (Z1i, 1) where

Zi1 = X1iα1+(Z2i−X2iα2)φ12+(Z3i−X3iα3)φ13+...+
(
Z(J−1)i −X(J−1)iα(J−1)

)
φ1(J−1).

The latent vectors Z2i (i = 1, ...N) are conditionally independent with the normal

distribution Z2i
iid∼ N (Z2i, H

−1
2 ) where

H2 = 1 + φ212,

Zi2 = Xi2α2

+H
−1
2 [φ12

(
Z1i −X1iα1 − (Z3i −X3iα3)φ13 − ...−

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ1(J−1)

)
+(Z3i −X3iα3)φ23 + ...+

(
Z(J−1)i −X(J−1)iα(J−1)

)
φ2(J−1)].
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The latent vectors Zji (i = 1, ...N ; j = 3, ..., J − 2) are conditionally independent

with the normal distribution Zji
iid∼ N (Zji, H

−1
j ) where

Hj = 1 +

j−1∑
k=1

φ2kj ,

Zji = Xjiαj +H
−1
j

j−1∑
s=1

φsj

Zsi −Xsiαs −
J−1∑

t=s+1,t6=j
(Zti −Xtiαt)φst


+

J−1∑
t=j+1

(Zti −Xtiαt)φjt

 .
The latent vectors Z(J−1)i (i = 1, ...N) are conditionally independent with the

normal distribution Z(J−1)i
iid∼ N (Z(J−1)i, H

−1
J−1) where

HJ−1 = 1 + φ2(J−2)(J−1) + ...+ φ22(J−1) + φ21(J−1),

Z(J−1)i = X(J−1)iα(J−1) +H
−1
J−1

×
[
φ1(J−1){Z1i −X1iα1 − (Z2i −X2iα2)φ12 − ...− (Z(J−2)i −X(J−2)iα(J−2))φ1(J−2)}

+φ2(J−1){Z2i −X2iα2 − (Z3i −X3iα3)φ23 − ...−
(
Z(J−2)i −X(J−2)iα(J−2)

)
φ2(J−2)}

+...

+φ(J−3)(J−1){Z(J−3)i −X(J−3)iα(J−3) −
(
Z(J−2)i −X(J−2)iα(J−2)

)
φ(J−3)(J−2)}

+φ(J−2)(J−1){Z(J−2)i −X(J−2)iα(J−2)}
]

Each latent variable Zji (j = 1, ..., J − 1) is truncated such that

Zji > max {Zki| k = 1, ..., J, k 6= j} if dji = 1,

Zji < max {Zki| k = 1, ..., J, k 6= j} if dji = 0.

2. Let C1i = (X1i, (Z2i−X2iα2), ..., (Z(J−1)i−X(J−1)iα(J−1))), β′1 =
(
α′1, φ12, ..., φ1(J−1)

)
.

Given the prior distribution for β1 ∼ N (β
1
, H−1β1 ) the full conditional distribution
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of β1 is β1 ∼ N (β1, H
−1
β1

) where

Hβ1 = Hβ1
+

N∑
i=1

C ′1iC1i

β1 = H
−1
β1

[
Hβ1

β
1

+

N∑
i=1

C ′1iZ1i

]
.

3. Given the prior distribution of αj (j = 2, ..., J − 2), N (αj , H
−1
αj ), the full condi-

tional distribution of αj is αj ∼ N (αj , H
−1
αj ) where

Hαj = Hαj +

N∑
i=1

X ′ji

(
1 +

j−1∑
k=1

φ2kj

)
Xji

αj = H
−1
αj [Hαjαj +

N∑
i=1

X ′ji

(
1 +

j−1∑
k=1

φ2kj

)
Zji

−X ′ji
j−1∑
s=1

φsj

Zsi −Xsiαs −
J−1∑

t=s+1,t6=j
(Zti −Xtiαt)φst


−X ′ji

J−1∑
t=j+1

(Zti −Xtiαt)φjt].

4. Given the prior distribution of αJ−1, N (αJ−1, H
−1
αJ−1), the full conditional distri-

bution of αj is αJ−1 ∼ N (αJ−1, H
−1
αJ−1) where

HαJ−1 = HαJ−1 +
N∑
i=1

X ′(J−1)i

(
1 +

J−2∑
k=1

φ2k(J−1)

)
X(J−1)i

αJ−1 = H
−1
αJ−1 [HαJ−1αJ−1 +

N∑
i=1

X ′(J−1)i

(
1 +

J−2∑
k=1

φ2k(J−1)

)
Z(J−1)i

−X ′(J−1)i
J−3∑
s=1

φs(J−1)

(
Zsi −Xsiαs −

J−2∑
t=s+1

(Zti −Xtiαt)φst

)
−X ′(J−1)iφ(J−2)(J−1)

(
Z(J−2)i −X(J−2)iα(J−2)

)]
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5. Let Cji = (Z(j+1)i−X(j+1)iα(j+1)), ..., (Z(J−1)i−X(J−1)iα(J−1))), β′j =
(
φj(j+1), ..., φj(J−1)

)
for j = 2, ..., J − 2. Given the prior distribution for βj ∼ N (β

j
, H−1βj ) the full con-

ditional distribution of βj is βj ∼ N (βj , H
−1
βj

) where

Hβj = Hβj
+

N∑
i=1

C ′jiCji

βj = H
−1
βj

[
Hβj

β
j

+
N∑
i=1

C ′ji (Zji −Xjiαj)

]
.

This concludes the MCMC algorithm.

22



References

Aitchison, J., Bennett, J.A., 1970. Polychotomous quantal response by maximum

indicant. Biometrika 57, 253-262.

Albert, J.H., Chib, S., 1993. Bayesian analysis of binary and polychotomous response

data. Journal of the American Statistical Association 88, 669-679.

Bunch, D.S., 1991. Estimability in the multinomial probit Model. Transportation

Research B 25, 1-12.

Bunch, D.S., Kitamura, R., 1991. Probit model estimation revisited: trinomial models

of household car ownership. Working paper 70, University of California, Berkeley,

https://escholarship.org/content/qt2hr8d4bs/qt2hr8d4bs.pdf

Burgette, L.F., Nordheim, E.V., 2012. The trace restriction: An alternative identifi-

cation strategy for the Bayesian multinomial probit model. Journal of Business &

Economic Statistics 30, 404—410.

Geweke, J., Keane, M.P., Runkle, D., 1994. Alternative computational approaches

to inference in the multinomial probit model. The Review of Economics and

Statistics 76, 609-632.

Heckman, J., Sedlacek, G., 1985. Heterogeneity, aggregation, and market wage func-

tions: an empirical model of self- selection in the labor market. Journal of Political

Economy 93, 1077-1125.

Imai, K., Van Dyk, D.A., 2005. A Bayesian analysis of the multinomial probit model

using marginal data augmentation. Journal of Econometrics 124, 311—334.

Keane, M.P., 1992. A note on identification in the multinomial probit model. Journal

of Business and Economic Statistics 10, 193-200.

23



McCulloch, R.E., Rossi, P. E., 1994. An exact likelihood analysis of the multinomial

probit model. Journal of Econometrics 64, 207-240.

McCulloch, R.E., Polson, N.G., Rossi, P.E., 2000. A Bayesian analysis of the multino-

mial probit model with fully identified parameters. Journal of Econometrics 99,

173-193.

Munkin, M.K., Trivedi, P.K., 2008. Bayesian analysis of the ordered probit model with

endogenous selection. Journal of Econometrics 143, 334-348.

Nobile, A., 1998. A hybrid Markov chain for the Bayesian analysis of the multinomial

probit model. Statistics and Computing 8, 229-242.

Nobile, A., 2000. Comment: Bayesian multinomial probit models with normalization

constraint. Journal of Econometrics 99, 335—345.

24



Table 1. Trinomial Probit (σ12 = 0): ML Estimates with σ2 Restrictions.

Parameter True Value ML (1) (2) (3) (4) (5)

α11 -0.8 -0.892 -0.893 -0.892 -0.892 -0.895 -0.897
0.045 0.046 0.046 0.046 0.045 0.045

α12 0.2 0.212 0.206 0.208 0.213 0.215 0.216
0.008 0.008 0.008 0.008 0.008 0.008

α21 -2.0 -2.571 -1.763 -2.053 -2.790 -3.539 -4.141
0.459 0.062 0.069 0.088 0.105 0.118

α22 0.4 0.494 0.354 0.405 0.531 0.657 0.758
0.078 0.011 0.012 0.016 0.020 0.023

σ12 0 -0.205 -0.102 -0.135 -0.239 -0.368 -0.484
0.144 0.091 0.104 0.140 0.172 0.198

σ2 1.5 1.852 1.3 1.5 2 2.5 2.9
0.305

log L̂ -7764.17 -7766.53 -7764.96 -7764.26 -7765.37 -7766.61
log L̂U − log L̂R 0 2.36 0.79 0.09 1.2 2.44

(ML estimates are in the first rows, standard errors are in the second rows)
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Table 2. The Estimated Restricted Log-likelihoods and "No rejection" Intervals for
Various ρ Values.

Parameters ρ = 0 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 0.9

σ2 = 1 -7771.93 -7768.05 -7745.57 -7712.11 -7642.87 -7415.713 -7079.98 -6750.80
σ2 = 1.1 -7769.57 -7765.44 -7742.68 -7709.03 -7639.52 -7411.03 -7072.93 -6740.48
σ2 = 1.2 -7767.81 -7763.49 -7740.53 -7706.77 -7637.10 -7407.71 -7068.05 -6733.12
σ2 = 1.3 -7766.53 -7762.06 -7738.96 -7705.13 -7635.39 -7405.42 -7064.83 -6728.03
σ2 = 1.4 -7765.60 -7761.03 -7737.83 -7703.97 -7634.23 -7403.94 -7062.90 -6724.72
σ2 = 1.5 -7764.96 -7760.30 -7737.05 -7703.20 -7633.50 -7403.09 -7061.97 -6722.87
σ2 = 1.6 -7764.54 -7759.83 -7736.55 -7702.71 -7633.09 -7402.71 -7061.82 -6722.21
σ2 = 1.7 -7764.30 -7759.54 -7736.25 -7702.45 -7632.94 -7402.72 -7062.29 -6722.53
σ2 = 1.8 -7764.19 -7759.40 -7736.12 -7702.37 -7632.99 -7403.01 -7063.24 -6723.62
σ2 = 1.9 -7764.18 -7759.38 -7736.12 -7702.43 -7633.19 -7403.53 -7064.54 -6725.32
σ2 = 2 -7764.26 -7759.45 -7736.23 -7702.59 -7633.51 -7404.21 -7066.11 -6727.47
σ2 = 2.1 -7764.41 -7759.59 -7736.41 -7702.84 -7633.91 -7405.01 -7067.87 -6729.94
σ2 = 2.2 -7764.60 -7759.79 -7736.65 -7703.15 -7634.38 -7405.91 -7069.77 -6732.64
σ2 = 2.3 -7764.83 -7760.03 -7736.94 -7703.51 -7634.90 -7406.86 -7071.74 -6735.47
σ2 = 2.4 -7765.09 -7760.30 -7737.26 -7703.90 -7635.46 -7407.86 -7073.77 -6738.38
σ2 = 2.5 -7765.37 -7760.60 -7737.61 -7704.32 -7636.03 -7408.89 -7075.81 -6741.32
σ2 = 2.6 -7765.67 -7760.91 -7737.98 -7704.76 -7636.62 -7409.92 -7077.85 -6744.26
σ2 = 2.7 -7765.98 -7761.24 -7738.35 -7705.21 -7637.22 -7410.96 -7079.87 -6747.16
σ2 = 2.8 -7766.29 -7761.57 -7738.74 -7705.66 -7637.83 -7411.99 -7081.86 -6750.01
σ2 = 2.9 -7766.61 -7761.91 -7739.13 -7706.12 -7638.43 -7413.01 -7083.81 -6752.79
σ2 = 3 -7766.93 -7762.25 -7739.53 -7706.58 -7639.02 -7414.02 -7085.71 -6755.50

LR Intervals [1.3,2.9] [1.4,2.9] [1.4,2.8] [1.4,2.6] [1.4,2.3] [1.4,2.1] [1.4,1.8] [1.4,1.8]
ML Intervals [1.4,2.3] [1.3,2.4] [1.4,2.3] [1.4,2.2] [1.3,2.1] [1.4,1.9] [1.4,1.8] [1.4,1.8]

log L̂ML -7764.17 -7759.37 -7736.11 -7702.37 -7632.94 -7402.68 -7061.79 -6722.20
ρ̂ML 1.85 1.87 1.85 1.80 1.72 1.65 1.57 1.61
(std.err) 0.30 0.32 0.30 0.26 0.24 0.17 0.12 0.11
log L̂ML − χ20.1 (1) -7766.87 -7762.07 -7738.81 -7705.07 -7635.64 -7405.38 -7064.49 -6724.90
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Table 3. Trinomial Probit: MPR and M Estimates when σ12 = 0.

Parameter True Value M MPR
Lag 20 RNE Lag 20 RNE

α11 -0.8 -0.900 0.31 0.025 -0.894 0.27 0.026
0.048 0.046

α12 0.2 0.201 0.06 0.131 0.211 0.10 0.016
0.008 0.009

α21 -2.0 -1.332 0.25 0.030 -2.602 0.96 0.0007
0.049 0.545

α22 0.4 0.277 0.02 0.192 0.498 0.95 0.0007
0.009 0.093

σ12 0 -0.060 0.64 0.012 -0.227 0.77 0.0019
0.068 0.164

σ2 1.5 3.627 0.97 0.0008
1.470

(Posterior means are in the first rows, posterior standard deviations are in the second rows)

Table 4. Trinomial Probit: RNE and Lag 20 Values of M Markov Chains with Respect
to ρ.

Parameter ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.9

Lag 20 RNE Lag 20 RNE Lag 20 RNE Lag 20 RNE Lag 20 RNE
α11 0.25 0.029 0.20 0.042 <0.01 0.229 0.12 0.057 0.13 0.052

α21 0.27 0.028 0.29 0.028 0.51 0.012 0.45 0.015 0.35 0.022

σ12 0.63 0.012 0.61 0.013 0.69 0.009 0.66 0.010 0.59 0.013

Table 5. Trinomial Probit: RNE and Lag 20 Values of MPR Markov Chains with
Respect to ρ.

Parameter ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.8 ρ = 0.9

Lag 20 RNE Lag 20 RNE Lag 20 RNE Lag 20 RNE Lag 20 RNE
α11 0.28 0.027 0.31 0.024 0.29 0.027 0.40 0.018 0.52 0.012

α21 0.95 0.001 0.95 0.008 0.93 0.001 0.90 0.002 0.92 0.001

σ12 0.69 0.001 0.64 0.010 0.69 0.003 0.85 0.002 0.93 0.001

σ2 0.96 0.001 0.97 0.0008 0.94 0.001 0.91 0.002 0.94 0.001
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Table 6. Multinomial Probit: M Estimates when J = 4 and J = 5.

Parameter True Value J = 4 J = 5

Lag 20 RNE Lag 20 RNE
α11 -0.5 -0.582 0.38 0.021 -0.570 0.50 0.013

0.038 0.044
α12 1 0.984 0.47 0.017 0.931 0.53 0.013

0.023 0.024
α21 -0.5 -0.486 0.43 0.014 -0.539 0.62 0.009

0.038 0.051
α22 1 0.929 0.47 0.014 0.938 0.62 0.009

0.023 0.026
α31 -0.5 -0.356 0.32 0.025 -0.451 0.54 0.011

0.034 0.045
α32 1 0.845 0.37 0.025 0.887 0.52 0.013

0.020 0.023
α41 -0.5 -0.423 0.48 0.014

0.042
α42 1 0.863 0.46 0.016

0.022
σ12 0 -0.021 0.56 0.013 0.112 0.64 0.011

0.062 0.073
σ13 0 0.015 0.50 0.017 0.034 0.62 0.012

0.058 0.069
σ14 0 -0.014 0.61 0.012

0.070
σ23 0 -0.046 0.56 0.012 -0.068 0.68 0.009

0.061 0.077
σ24 0 -0.117 0.66 0.009

0.074
σ34 0 -0.070 0.63 0.010

0.070

(Posterior means are in the first rows, posterior standard deviations are in the second rows)
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Figure 1. The Shape of the Log-likelihood Function when ρ = 0.
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Figure 2. The Shape of the Log-likelihood Function when ρ = 0.6.
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Figure 3. The Shape of the Log-likelihood Function when ρ = 0.9.
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Figure 4. Time Series and Autocorrelation Function Plots: M Estimates.
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Figure 5. Time Series and Autocorrelation Function Plots: MPR Estimates.
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