
Abstract

Jumamyradov and Munkin (2021) showed that the maximum sim-
ulated likelihood (MSL) estimator produces significant biases when ap-
plied to the bivariate normal and bivariate Poisson-lognormal models.
Their conclusion is that similar biases can be present in other models
generated by correlated bivariate normal structures, which include most
commonly used specifications of the mixed logit (MIXL) models. This
paper conducts a simulation study analyzing MSL estimation of the
error-components (EC) MIXL. We find that the MSL estimator pro-
duces significant biases in the estimated parameters, leading to up to
12% difference in the true and estimated marginal effects.
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1 Introduction
This paper examines the maximum simulated likelihood (MSL) estimator of the
error components (EC) mixed logit (MIXL) model. The MIXL has been preferred
by applied economists due to its flexible latent structure allowing various spec-
ifications of behavioral patterns. Since the model does not have a closed-form,
its estimation relies on simulation-based methods, specifically the MSL estimator,
which has been the dominant estimation strategy for more than 20 years. However,
Jumamyradov and Munkin (2021) showed that the MSL estimator produces signif-
icant biases when applied to the bivariate normal and bivariate Poisson-lognormal
models. Their conclusion is that similar biases can be present in other models
generated by correlated bivariate normal structures, which include most commonly
used specifications of the MIXL models. Therefore, further analysis of the MSL
estimator in the context of the MIXL model is necessary.

The multinomial logit (MNL) model was introduced by McFadden (1974).
It has a closed-form solution due to two convenient, however, restrictive assump-
tions. First, the MNL model assumes that the error terms are independently and
identically distributed (i.i.d.) as type 1 extreme value (EV1) across individuals and
alternatives. As a result, the MNL model suffers from the independence from irrel-
evant alternatives (IIA) property (Debreu, 1960), which in the literature has been
illustrated by the ”red-bus, blue-bus” example (Quandt, 1970). Second, the MNL
model does not allow unobserved variation of individual tastes (i.e., taste hetero-
geneity) in the population, meaning that the coefficients associated with alternative
specific variables and observable alternative attributes that vary over individuals are
fixed. Although the MNL model has become the ”workhorse” in discrete choice
analysis (Hensher and Greene, 2003), its inconsistencies with realistic behavioral
patterns have led researchers to look for more flexible alternative models. The
MIXL model was derived by relaxing these restrictive assumptions (see McFadden,
2001).

The first contribution in the development of the MIXL model came with
relaxing the assumption of homogeneous parameters. Specifically, Boyd and Mell-
man (1980) and Cardell and Dunbar (1980) analyzed market demand for automo-
biles by allowing consumer taste coefficients associated with attributes of the al-
ternatives to vary over individuals in the form of random variables representing
random taste heterogeneity (i.e., taste patterns). This specification of the MIXL
model is also known as the random coefficients, with application examples includ-
ing Revelt and Train (1998) and Bhat (2000). Revelt and Train (1998) analyzed
households’ choices of efficiency levels for refrigerators based on rebates and loans
using panel data MIXL model. Bhat (2000) studied urban work travel mode choices
by incorporating observed and unobserved individual characteristics into panel data



MIXL model. Like random coefficients, alternative-specific constants (ASCs) may
not be homogeneous within a sample, potentially leading to substitution patterns
(e.g., red-bus-blue-bus)(Quandt, 1970). The challenges of accommodating such
heterogeneity is well-known in choice modelling (see Hensher et al., 2005).

Next, the i.i.d. assumption of the MNL model was relaxed allowing non-
independent and non-identical errors, leading to the EC MIXL and generalized
mixed logit (GMIXL). The EC specification of the MIXL model assumes that the
stochastic portion of the utility consists of two parts, the i.i.d. errors with EV1
distribution and additional components varying over alternatives and individuals.
This specification induces various correlation structures (i.e., taste and substitution
patterns) as well as heteroskedasticity through nests or cross-nests created among
alternatives as a result of shared error components. Brownstone and Train (1998)
used this approach to forecast new product penetration rates by allowing flexible
substitution patterns among alternative sources of fuel for vehicles.

Recent studies related to discrete choice modelling recognized the neces-
sity for heterogeneity of the scale parameter (see Louviere et al., 1999; Louviere
et al., 2002; Louviere et al., 2008), which lead to another specification of the MIXL
model that relaxes the i.i.d. assumption. The scale parameter is directly related to
the variance of the EV1 error terms, and usually is restricted to 1 because it cannot
be identified separately from the slope coefficients. However, Fiebig et al. (2010) as
well as Greene and Hensher (2010) proposed the generalized mixed logit (GMIXL)
model that allows individual variation in the variance of the EV1 error terms (i.e.,
scale heterogeneity) along with unobserved individual heterogeneity in the slope
coefficients. Although it has been shown that the GMIXL model performs better
than the standard MIXL model (Fiebig et al., 2010; Keane and Wasi, 2013), Hess
and Train (2017), as well as Hess and Rose (2012) raised concerns about the iden-
tifiability of the GMIXL model. It is an open research question, what additional
assumptions need to be imposed to make the GMIXL model estimable.

The flexibility of the MIXL model is achieved by introducing latent vari-
ables into the model. However, it leads to intractability of the choice probabilities,
which cannot be evaluated analytically since they do not have a closed-form. There-
fore, estimation of the MIXL model relies on numerical approximation of the choice
probabilities through simulation. The MSL estimator was introduced by Lerman
and Manski (1980) to replace intractable choice probabilities of the multinomial
probit (MNP) model with simulated probabilities.

A well-known limitation of the MSL estimator is that it is biased when the
number of simulations is fixed (see Gourieroux and Monfort, 1996; Lee, 1995;
and Hajivassiliou et al., 1996; Train, 2009). Nevertheless, estimation of the MIXL
model in the literature is based on the MSL estimator, including studies by Ben-
Akiva et al. (1993), Revelt and Train (1998), Bhat (1998), Brownstone and Train



(1998), McFadden and Train (2000), Hess et al. (2005). The usual practice is to
use MSL in combination with Halton draws to reduce the simulation bias. Bhat
(2001) showed that 100 Halton draws provide better approximation results than
1000 pseudo-random draws for the mixed logit model. According to Palma et al.
(2020), around 93% of over 150 papers indexed in the Research Papers in Eco-
nomics (RePEc) produced during 2008-2018 use less than 1000 Halton draws in
their estimation of the mixed logit model. Furthermore, 72% and 40% of these
papers use less than 500, and 250 Halton draws, respectively. Czajkowski and
Budziński (2019) find that more than 3000 Halton draws are necessary to achieve a
Minimum Tolerance Level of 5%. However, in the RePEc database, only 5.6% of
papers used more than 2000 Halton draws (Palma et al., 2020). In this paper, we
simulate MIXL data and assess the MSL performance based the difference between
the true and estimated parameters.

Jumamyradov and Munkin (2021) primarily focused their analysis on esti-
mation of the correlation parameter in the bivariate normal and bivariate Poisson-
lognormal models. In this paper, we closely follow their strategy and allow correla-
tion across utility of different alternatives. We also utilize Halton draws and analyze
two error components specifications of the MIXL model. The first specification is
the MIXL model with correlated slope coefficients and fixed alternative specific co-
efficients (ASCs). The second example is the MIXL model with correlated ASCs
and fixed slope coefficients. Moreover, for simplicity, we assume that there is only
one attribute varying over alternatives and individuals. It should be noted that in
most specifications of the MIXL model used by practitioners, the correlation pa-
rameter is assumed to be zero for simplicity, compromising robustness to the IIA
property. However, practitioners are mostly interested in the estimated mean and
variance of the random parameters. Nevertheless, our findings illustrate simulation
biases with zero correlation based on the differences between the true and estimated
parameters.

There have been several studies that compared MIXL results by estimator
and software package. Huber and Train (2001), Regier et al. (2009), Haan et al.
(2015) and Elshiewy et al. (2017) compare MSL and Bayesian estimation of the
MIXL model. The first three of these studies are based on a single panel dataset.
The last one uses cross-sectional and panel data with three empirical and four sim-
ulated datasets. Although Elshiewy et al. (2017) find MSL biases of the correlation
parameter in the cross-sectional MIXL model, they only test two values (0.75 and
0.25). We analyze the MSL estimator with respect to an extensive range of values
of the correlation parameter and standard deviation, as well as different numbers of
Halton draws. To our best knowledge, an extensive Monte-Carlo simulation study
like this has not been conducted before.

The rest of the paper is organized as follows. Section 2 introduces the MSL



estimator generally. Section 3 presents the logit model specifications. Section 4
presents numerical examples with MIXL data simulation and MSL estimation re-
sults. Section 5 concludes.

2 Maximum Simulated Likelihood Estimator
The maximum likelihood (ML) estimator of parameter vector θ can be utilized
when f (yi|xi,θ), the density of dependent variable yi conditional on the vector of
independent variables xi, has a closed-form such that

θ̂N = argmax
θ

N

∑
i=1

log f (yi|xi,θ),

where (yi,xi) is a set of independent observations for i = 1, ...,N. However, ML
is not feasible when f (yi|xi,θ) does not have a tractable closed-form. This can be
because the density is specified only conditional on latent variables which cannot be
integrated out. Then the MSL estimator is a possible alternative, which we define
following Gourieroux and Monfort (1990) and Gourieroux and Monfort (1996).
Suppose f̃ (yi,xi,u,θ) is an unbiased simulator of the conditional density f (yi|xi,θ)
such that

f (yi|xi,θ) = Eu[ f̃ (yi,xi,u,θ)|yi,xi]

where the distribution of u is known and independent of yi and xi. Then the MSL
estimator of θ is defined as

θ̂SN = argmax
θ

N

∑
i=1

log

[
1
S

S

∑
s=1

f̃ (yi,xi,us
i ,θ)

]
,

where us
i (s = 1, ...,S) are drawn independently for each individual i from the dis-

tribution of ui. The MSL estimator is obtained by replacing the intractable con-
ditional p.d.f. f (yi|xi,θ) with its unbiased approximation based on the simula-
tor f̃ (yi,xi,ui,θ). However, although f̃ (yi,xi,ui,θ) is an unbiased simulator of
f (yi|xi,θ), its log transformation log f̃ (yi,xi,ui,θ) is not an unbiased simulator of
log f (yi|xi,θ), which results in simulation biases in the MSL estimator.

Asymptotic properties of the MSL estimator are determined by the relation-
ship between S and N. For instance, the MSL estimator is biased when S is fixed
and N tends to infinity (Property 1 in Gourieroux and Monfort, 1990). If S increases
with N, then the MSL estimator is consistent (Property 2 in Gourieroux and Mon-
fort, 1990). If S increases faster than

√
N (

√
N/S → 0), then the MSL estimator is

also efficient, and therefore asymptotically equivalent to the ML estimator (Prop-
erty 7 in Gourieroux and Monfort, 1990). In practice neither N nor S might be close



enough to infinity. However, the expectation is that there are achievable levels large
enough for the biases to become acceptably small.

3 Model Specifications
In this section we define the MNL model and two specifications of the EC MIXL
model. We also provide detailed information on how to simulate the corresponding
likelihood functions.

3.1 Random Utility Maximization

Discrete choice models are usually introduced based on the random utility max-
imization (RUM) theory (see McFadden, 1974), which states that utility of indi-
vidual i = 1, ...,N from choosing alternative j = 1, ...,J can be presented as Ui j =
Vi j+εi j, where Vi j is the observed part of the utility and εi j is the stochastic portion,
unobserved by the researcher. Individual i will choose alternative j if and only if
the level of utility associated with alternative j is higher than the levels associated
with the other alternatives

Pi j = P(Ui j >Uik,∀ k ̸= j)
Pi j = P(Vi j + εi j >Vik + εik,∀ k ̸= j) (1)
Pi j = P(εik − εi j <Vi j −Vik,∀ k ̸= j)

Since utilities are latent, choice probabilities are evaluated at relative measures
where utility of one of the alternatives is taken as a reference. In order to calcu-
late choice probabilities, distributional assumptions of the stochastic utility must
be made. In the logit family of models, εi j is assumed to be independently and
identically distributed (i.i.d.) across individuals and alternatives with extreme value
type 1 (EV1) distribution. As a result, the difference of two i.i.d. EV1 error terms(
εik − εi j

)
has a logistic distribution with the cumulative distribution function

Pi j =
1

1+∑
J
k=1 exp(Vik −Vi j)

,∀ k ̸= j. (2)

The observed utility Vi j is a function of individual characteristics and alternative
attributes, and usually assumed to be linear in the parameters.

3.2 Multinomial Logit (MNL) Model

The MNL model is derived under the assumption that all coefficients are fixed,
implying that all individuals in the population have homogeneous tastes. In this



paper, we consider the case of three alternatives, in which the third alternative is
restricted as a referent category. Therefore, we work with two utility differences
Zi1 =Ui1 −Ui3 and Zi2 =Ui2 −Ui3 defined as

Zi1 = α1 +β1xi1 + εi1 (3)
Zi2 = α2 +β2xi2 + εi2

where εi1
i.i.d.∼ Logistic(0,1) and εi2

i.i.d.∼ Logistic(0,1) are logistically distributed,
xi1 and xi2 are alternative attributes, α1 and α2 are alternative-specific coefficients
(ASC), and β1 and β2 are coefficient of alternative attributes. In some specifications,
these coefficients are restricted to be equal β1 = β2 = β . In the numerical examples,
we choose the distribution of the covariates to be standard normal such that xi1

i.i.d.∼
N(0,1) and xi2

i.i.d.∼ N(0,1). The observability conditions for the outcome variables
yi1, yi2 and yi3 are defined as

yi1 = 1 if and only if Zi1 ≥ Zi2,Zi1 ≥ 0
yi2 = 1 if and only if Zi2 > Zi1,Zi2 ≥ 0 (4)
yi3 = 1 if and only if Zi1 < 0,Zi2 < 0.

In other words, individual i chooses the alternative with the highest utility.

3.3 Mixed Logit (MIXL) Model

The assumption of homogeneous preferences leads to computationally convenient
functional forms for the choice probabilities. However, preference homogeneity is
not consistent with realistic behavioral patterns. Next, we present two specifications
of the EC MIXL model that allow various taste and substitution patterns through
correlation between the utilities of different alternatives. The first specification is
the MIXL model with correlated slope coefficients and fixed ASCs. The second
example is the MIXL model with correlated ASCs and fixed slope coefficients.
We refer to these two examples as EC1 and EC2, respectively. Under the EC1
specification taste patterns, we assume that

Zi1 = α1 +(β1 +ui1)xi1 + εi1 (5)
Zi2 = α2 +(β2 +ui2)xi2 + εi2

where ui1 and ui2 are jointly normally distributed (ui1,ui2)
i.i.d.∼ N((0,0),Σ) with

covariance matrix Σ. Similarly, under the EC2 specification substitution patterns,



we assume

Zi1 = (α1 +ui1)+βxi1 + εi1 (6)
Zi2 = (α2 +ui2)+βxi2 + εi2

where once again (ui1,ui2)
i.i.d.∼ N((0,0),Σ). The covariance matrix in both cases is

parametrized as

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
where restriction σ1 = 1 is imposed for identification such that

Σ =

[
1 ρσ2

ρσ2 σ2
2

]
(7)

Define lower triangular matrix

L =

[
1 0

σ2ρ σ2
√

1−ρ2

]
(8)

to be Choleski decomposition of the covariance matrix such as Σ = LL′. Then
bivariate normal ui1 and ui2 can be written as[

ui1
ui2

]
= L

[
vi1
vi2

]
(9)

where vi1
i.i.d.∼ N(0,1) and vi2

i.i.d.∼ N(0,1) which helps us to approximate the simu-
lated likelihood function drawing from the known densities.

Both EC1 and EC2 specifications induce correlation in utilities of different
alternatives. EC1 specification allows for correlation through the coefficients as-
sociated with alternative attributes xi1 and xi2. This correlation is known as taste
patterns because the weights for an attribute are associated with the weights of an-
other attribute. EC2 specification allows for correlations through the ASCs, similar
to the classic red-bus-blue-bus example. This is also known as substitution patterns
because the weights of an alternative are associated with those of another (e.g.,
red and blue bus). Each MIXL specification relaxes the preference homogeneity
assumption in a slightly different way and may be warranted depending on the de-
cision context.



3.4 Simulated Likelihood Function of MIXL

MIXL choice probabilities unconditional of the unobserved latent variables vi1 and
vi2 can be written as integrals over the density f (vi1,vi2) such that

P(yi1 = 1) =
∫

vi1

∫
vi2

[
exp(Vi1)

1+ exp(Vi1)+ exp(Vi2)

]
f (vi1,vi2)dvi2dvi1 (10)

P(yi2 = 1) =
∫

vi1

∫
vi2

[
exp(Vi2)

1+ exp(Vi1)+ exp(Vi2)

]
f (vi1,vi2)dvi2dvi1

P(yi3 = 1) =
∫

vi1

∫
vi2

[
1

1+ exp(Vi1)+ exp(Vi2)

]
f (vi1,vi2)dvi2dvi1

where the form of Vi1 and Vi2 depends on the EC model. In the EC1 specification

Vi1 = α1 +(β1 + vi1)xi1 (11)

Vi2 = α2 +(β2 +σ2ρvi1 +σ2vi2

√
1−ρ2)xi2,

and in the EC2 specification

Vi1 = (α1 + vi1)+βxi1 (12)

Vi2 = (α2 +σ2ρvi1 +σ2vi2

√
1−ρ2)+βxi2.

The log-likelihood function to be maximized can be written as

LL =
N

∑
i=1

(
3

∑
j=1

I
{

yi j = 1
}

lnP(yi j = 1)

)
. (13)

However, the choice probabilities in equation (10) do not have a closed form, and
the log-likelihood function cannot be calculated analytically. Therefore, we ap-
proximate the choice probabilities through simulation and maximize the simulated
log-likelihood function

SLL =
N

∑
i=1

(
3

∑
j=1

I
{

yi j = 1
}

ln P̂(yi j = 1)

)
, (14)



where simulated choice probabilities are

P̂(yi1 = 1) =
1
S

S

∑
s=1

[
exp(V s

i1)

1+ exp(V s
i1)+ exp(V s

i2)

]
(15)

P̂(yi2 = 1) =
1
S

S

∑
s=1

[
exp(V s

i2)

1+ exp(V s
i1)+ exp(V s

i2)

]
P̂(yi3 = 1) =

1
S

S

∑
s=1

[
1

1+ exp(V s
i1)+ exp(V s

i2)

]
and s = 1, ...,S represents the draw for vs

i1 and vs
i2 used to evaluate V s

i1 and V s
i2.

4 MIXL Numerical Examples
We generate data according to the EC1 and EC2 models. For each data generation
process, the following specifications are used: α1 = α2 = −0.25, β = β1 = β2 =
1, xi1 ∼ N(0,1), xi2 ∼ N(0,1), (ui1,ui2) ∼ N((0,0),(1,ρσ2,σ

2
2 )), i = 1, ...,N, and

N = 1000. We test three different values for σ2 = (0.25,0.5,1) and generate data
set for all values of the correlation parameters ρ ranging from −0.95 to 0.95 with
increments of 0.05, ρ = {−0.95 : 0.05 : 0.95}. Hence, a total of 3× 39 = 117
covariance matrices for each specification is analyzed.

To examine the performance of the MSL estimator, we estimate the MIXL
model under three different sets of restrictions imposed on the covariance matrix
(M0, M1 and M2). Under M0, we did not impose any restrictions on the covariance
matrix and estimated all parameters. Under M1, we restricted the correlation pa-
rameter to zero ρ = 0 and estimated the remaining parameters. Finally, under M2,
we restricted the correlation parameter to its true value (ρ = TV ) and estimated the
remaining parameters. In each example, the numbers of Halton draws are chosen to
be H = (250,500,1000), which is consistent with the levels used in leading MSL



applications.

Table 1: MSL Estimates for the EC1 (Taste Patterns)
ρ =−0.95

250 draws 500 draws 1000 draws
σ2 = 0.25 σ2 = 0.5 σ2 = 1 σ2 = 0.25 σ2 = 0.5 σ2 = 1 σ2 = 0.25 σ2 = 0.5 σ2 = 1

α̂1 -0.307 -0.299 -0.299 -0.299 -0.301 -0.303 -0.308 -0.298 -0.308
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 -0.349 -0.342 -0.273 -0.349 -0.342 -0.296 -0.348 -0.344 -0.289
(0.010) (0.009) (0.011) (0.009) (0.010) (0.012) (0.010) (0.010) (0.011)

β̂1 1.131 1.122 1.163 1.133 1.141 1.154 1.132 1.137 1.159
M0 (0.011) (0.011) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011) (0.012)

β̂2 1.248 1.197 1.070 1.265 1.241 1.136 1.245 1.220 1.120
(0.013) (0.013) (0.017) (0.013) (0.019) (0.027) (0.013) (0.014) (0.025)

σ̂2 0.413 0.569 0.885 0.439 0.662 0.930 0.405 0.566 0.897
(0.026) (0.023) (0.038) (0.030) (0.033) (0.054) (0.025) (0.022) (0.050)

ρ̂ -0.877 -0.938 -0.975 -0.875 -0.899 -0.970 -0.887 -0.904 -0.973
(0.026) (0.017) (0.008) (0.025) (0.023) (0.009) (0.025) (0.021) (0.009)

α̂1 -0.308 -0.297 -0.294 -0.300 -0.302 -0.302 -0.308 -0.298 -0.302
(0.008) (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 -0.342 -0.342 -0.295 -0.342 -0.337 -0.323 -0.342 -0.341 -0.323
(0.010) (0.010) (0.011) (0.010) (0.010) (0.012) (0.010) (0.010) (0.012)

M1 β̂1 1.151 1.147 1.196 1.151 1.167 1.190 1.151 1.162 1.190
(0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.011) (0.010) (0.012)

β̂2 1.250 1.227 1.179 1.261 1.254 1.264 1.249 1.239 1.263
(0.014) (0.015) (0.020) (0.016) (0.019) (0.025) (0.014) (0.016) (0.025)

σ̂2 0.305 0.522 1.013 0.322 0.563 1.107 0.320 0.508 1.108
(0.033) (0.036) (0.042) (0.035) (0.039) (0.049) (0.031) (0.032) (0.048)

α̂1 -0.307 -0.295 -0.291 -0.299 -0.299 -0.299 -0.307 -0.297 -0.299
(0.008) (0.009) (0.009) (0.008) (0.009) (0.009) (0.008) (0.009) (0.009)

α̂2 -0.348 -0.354 -0.315 -0.348 -0.349 -0.341 -0.348 -0.352 -0.340
(0.010) (0.010) (0.011) (0.010) (0.009) (0.011) (0.010) (0.010) (0.011)

M2 β̂1 1.127 1.114 1.148 1.126 1.132 1.140 1.127 1.129 1.140
(0.011) (0.011) (0.011) (0.012) (0.012) (0.012) (0.011) (0.010) (0.012)

β̂2 1.249 1.239 1.193 1.262 1.266 1.272 1.249 1.250 1.272
(0.012) (0.014) (0.017) (0.013) (0.016) (0.024) (0.012) (0.014) (0.024)

σ̂2 0.430 0.677 1.200 0.446 0.722 1.271 0.430 0.649 1.271
(0.025) (0.030) (0.034) (0.028) (0.030) (0.045) (0.025) (0.025) (0.045)

In summary, new MIXL data sets are generated for all 117 values of the covariance
matrices for both EC1 and EC2 specifications. For each data set, three specifications
(M0, M1, M2) are estimated, each with three different numbers of Halton draws
(250, 500, 1000). We repeat each simulation 100 times, R = 100, generating a new
data set and collecting the MSL estimates. The reported results are based on the
means and standard errors calculated for these 100 simulations.

4.1 Taste Patterns: EC1 Simulation Evidence

Table 1 presents MSL results (M0, M1, M2) for EC1 simulations with high and
negative correlation value ρ = −0.95. This extreme case produces a few results
that deserve attention. First, there are biases in all coefficient estimates under M0



specification. For instance, when the true values σ2 = 0.25, ρ = −0.95, and H =
250 the estimated values for α1, α2, β1 and β2 are −0.307 (0.008), −0.349 (0.010),
1.131 (0.011) and 1.248 (0.013), respectively. In other words, α̂1, α̂2 β̂1 and β̂2 are
separated from their true values by 7, 10, 12 and 19 standard errors, respectively
and, therefore, the null hypothesis that Ho : α1 = α2 =−0.25 and Ho : β1 = β2 = 1
are overwhelmingly rejected. Notice also that there is no apparent reductions in the
biases for α1, α2, β1 and β2 regardless whether we increase the true variance σ2 or
the number of Halton draws.

Second, MSL produce biased results for σ2 in small true values regardless
of the chosen number of Halton draws. For example, when σ2 = 0.25 and H = 250,
the estimated value of σ2 is 0.413 (0.026), which is separated from its true value by
6.27 standard errors, therefore the null hypothesis Ho : σ2 = 0.25 is rejected. How-
ever, the estimated σ2 gets closer to its true value when we increase the variance.
For example, when σ2 = 0.5, the estimated σ2 is 0.569 (0.023). The null hypoth-
esis Ho : σ2 = 0.5 is not rejected. The case when σ2 = 1 produces a similar result.
However, the biased results for small variances do not change with the numbers of
Halton draws. For instance, when H = 500 and H = 1000 the estimated values for
the true σ2 = 0.25 are 0.439 (0.030) and 0.405 (0.025), respectively. In both of
these cases the null hypothesis Ho : σ2 = 0.25 is rejected. It is also interesting to
notice that when the true standard deviation is σ2 = 1, the estimated σ2 are much
smaller in M0 than in M1 and M2.

Third, for almost all parameter sets presented in Table 1, the estimated ρ

is within three standard errors from its true values. The only case where the null
hypothesis that Ho : ρ =−0.95 may be rejected is when H = 250 and σ2 = 1. EC1
simulation results for all other 38 correlation values are provided in Supplementary
Materials.

Figure 1 plots estimated ρ̂ against their true values that range from −0.95 to
0.95 with increments of 0.05, where ρ̂ is calculated as the averages of ρ MSL esti-
mates under M0 specification, obtained based on 100 samples (R = 100) generated
for the same set of true values and estimated with 1000 Halton draws (H = 1000).
The diagonal black line represents the true value of ρ . The blue, red and green lines
correspond to σ2 = 0.25, σ2 = 0.5 and σ2 = 1, respectively. Figure 1 shows that ρ̂

is mostly biased downward for H = 1000.
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Figure 1: Plots of ρ̂ for EC1 (Taste Patterns) using M0 (H=1000)

Finally, when the researcher erroneously assumes that the true correlation is
zero (M1), there is no substantial worsening in the performance of MSL estimates.
Similarly, when ρ is restricted at the true values (M2), there is no substantial im-
provement in the estimation of the parameters. A potential explanation for this is
that the biases in MSL estimation of taste patterns are mostly caused by difficulties
in estimating the correlation parameter with the efficiency of ρ estimates declining
for smaller values of σ2.

4.2 Substitution Patterns: EC2 Simulation Evidence

Table 2 presents M0, M1 and M2 results for the EC2 simulations when the true
correlation is ρ = −0.95. First, notice that increasing the true value of variance
σ2 in M0 reduces the bias in α1, α2 and β . For example, given estimated α1, α2
and β as −0.274 (0.012), −0.314 (0.011) and 1.16 (0.009), respectively, we may
reject the null hypothesis that Ho : α2 =−0.25 and Ho : β = 1. However, when we
increase σ2 to 1, the estimated α1, α2 and β are withing 3 standard errors or their
respective true values. This conclusion is irrespective of the number of the Halton
draws.

Second, the standard errors of estimated σ2 are substantially larger than
those of α1, α2 and β . As a result, the estimated σ2 is within 3 standard errors from
its true value across almost all parameter sets presented in Table 2. Therefore, the



null hypothesis that σ2 is equal to the true value cannot be rejected for almost all
cases. The only exception is the case when σ2 = 1 and H = 1000, and σ̂2 is 0.853
(0.043) and it is separated from the true value by 3.4 standard errors. The standard
errors decrease slightly when correlation is restricted in specifications M1 and M2.

Table 2: MSL estimates for the EC2 (Substitution Patterns)
ρ =−0.95

250 draws 500 draws 1000 draws
σ2 = 0.25 σ2 = 0.5 σ2 = 1 σ2 = 0.25 σ2 = 0.5 σ2 = 1 σ2 = 0.25 σ2 = 0.5 σ2 = 1

α̂1 -0.274 -0.271 -0.241 -0.278 -0.246 -0.243 -0.285 -0.266 -0.238
(0.012) (0.012) (0.012) (0.011) (0.012) (0.012) (0.012) (0.011) (0.012)

α̂2 -0.314 -0.299 -0.227 -0.321 -0.289 -0.233 -0.349 -0.301 -0.216
(0.011) (0.013) (0.012) (0.014) (0.015) (0.014) (0.014) (0.013) (0.012)

β̂ 1.160 1.127 1.078 1.165 1.126 1.071 1.146 1.127 1.069
M0 (0.009) (0.009) (0.010) (0.009) (0.010) (0.009) (0.008) (0.008) (0.009)

σ̂2 0.258 0.469 0.892 0.284 0.484 0.874 0.252 0.442 0.853
(0.055) (0.050) (0.044) (0.058) (0.060) (0.044) (0.053) (0.050) (0.043)

ρ̂ -0.781 -0.810 -0.799 -0.726 -0.740 -0.819 -0.805 -0.768 -0.803
(0.040) (0.034) (0.036) (0.037) (0.039) (0.033) (0.034) (0.035) (0.036)

α̂1 -0.243 -0.200 -0.095 -0.247 -0.188 -0.093 -0.255 -0.199 -0.095
(0.009) (0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.009)

α̂2 -0.285 -0.241 -0.161 -0.292 -0.244 -0.171 -0.312 -0.247 -0.161
M1 (0.010) (0.011) (0.013) (0.013) (0.013) (0.016) (0.011) (0.013) (0.013)

β̂ 1.152 1.111 1.085 1.157 1.117 1.080 1.132 1.113 1.084
(0.010) (0.009) (0.011) (0.009) (0.011) (0.012) (0.008) (0.010) (0.011)

σ̂2 0.335 0.534 1.199 0.452 0.660 1.199 0.365 0.558 1.211
(0.052) (0.053) (0.058) (0.049) (0.053) (0.060) (0.041) (0.050) (0.055)

α̂1 -0.283 -0.280 -0.278 -0.283 -0.265 -0.281 -0.291 -0.278 -0.278
(0.012) (0.012) (0.013) (0.012) (0.013) (0.010) (0.013) (0.011) (0.013)

α̂2 -0.319 -0.312 -0.308 -0.319 -0.303 -0.319 -0.347 -0.316 -0.308
M2 (0.013) (0.015) (0.016) (0.016) (0.017) (0.019) (0.015) (0.016) (0.016)

β̂ 1.160 1.134 1.123 1.160 1.129 1.117 1.144 1.135 1.123
(0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.009) (0.010) (0.011)

σ̂2 0.235 0.452 1.027 0.223 0.449 1.058 0.222 0.451 1.028
(0.048) (0.047) (0.055) (0.052) (0.053) (0.044) (0.045) (0.045) (0.055)

Third, correlation parameter ρ is estimated with substantial biases in all M0 speci-
fications. Estimated ρ̂ is separated from the true value by 4 (H = 1000, σ2 = 1) to
6 standard errors (H = 500, σ2 = 0.25), and the null hypothesis Ho : ρ =−0.95 is
rejected in all cases. EC2 results for the other 38 correlation values is provided in
Supplementary Materials.

Figure 2 plots estimated ρ̂ against the true values once again ranging from
−0.95 to 0.95 with increments of 0.05. Although ρ̂ is close to ρ for some values,
the estimated correlation parameter mostly displays biases. The biases are smaller
for σ2 = 1 relative to when σ2 = 0.25 or σ2 = 0.5. This finding is consistent with
Jumamyradov and Munkin (2021) in the bivariate normal and bivariate Poisson-
lognormal models. They report larger biases for smaller standard deviations. Over-



all M0 results show biases for all five parameters α1, α2, β , σ2, ρ .
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Figure 2: Plots of ρ̂ for EC2 (Substitution Patterns) using M0 (H=1000)

It is also interesting to notice that MSL estimates of α1 and α2 in M1 have
larger biases than in M0 for larger variances, and this is regardless of the number
of Halton draws. For example, when H = 250 and σ2 = 1, the estimated α1 and α2
are −0.095 (0.009) and −0.161 (0.013), separated from their true value α1 = α2 =
−0.25 by 17 and 7 standard errors, respectively. This does not change much for
larger values of Halton draws. Thus, misspecifying the model setting correlation
ρ = 0 results in very large biases in α1 and α2. Moreover, M1 produces larger
positive biases of σ2 compared to M0. For example, when H = 1000, the estimated
σ2 are 0.365 (0.041), 0.558 (0.050) and 1.211 (0.055) for the true σ2 = 0.25,
σ2 = 0.5 and σ2 = 1, respectively. Moreover, the estimates of α1, α2 and β improve
with larger variances in M0, however, we do not observe similar patterns in M2
estimation, although there is an improvement in estimation of σ2.
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Figure 3: Plots of True and Estimated P(y=1) for EC1 (Taste Patterns) using M0 (H=500)
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Figure 4: Plots of True and Estimated P(y=1) for EC2 (Substitution Patterns) using M0 (H=500)
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Figure 5: Plots of True and Estimated ∂P(y=1)
∂x1

for EC1 (Taste Patterns) using M0 (H=500)
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4.3 Choice Probabilities and Marginal Effects

Next we examine how these reported biases affect the estimated choice probabil-
ities and marginal effects. Figure 3 plots true and estimated P(y = 1) calculated
based on M0 estimates of EC1 specification with 500 Halton draws. True probabil-
ity means are calculated at the true values of all parameters. Straight lines represent
true choice probabilities and dashed lines represent estimated choice probabilities.
Figure 4 plots true and estimated P(y = 1) based on M0 estimates of EC2 spec-
ification with 500 Halton draws. Even though there are significant biases in the
estimated parameters, as expected the choice probabilities are close to their true
values for both EC1 and EC2 specification (i.e., taste and substitution patterns).

However, when comparing true and estimated marginal effects, the dif-
ferences are considerable. Figure 5 plots true and estimated ∂P(y = 1)/∂x1 for
EC1 (M0, 500 Halton draws). For example, when σ2 = 1 and ρ = 0.95, the true
∂P(y = 1)/∂x1 is 0.1509 and the estimated ∂P(y = 1)/∂x1 is 0.1679. Thus, the
marginal effect in this case is overestimated by 11%. Figure 6 plots true and esti-
mated ∂P(y = 1)/∂x1 for EC2 (M0, 500 Halton draws). For example, when σ2 = 1
and ρ =−0.95, the true ∂P(y = 1)/∂x1 is 0.164 and the estimated ∂P(y = 1)/∂x1
is 0.1839, which is overestimated by 12%.

5 Conclusion
In this paper we examine properties of the MSL estimator in the context of two
MIXL model specifications, EC1 and EC2 (i.e., taste and substitution patterns),
where random parameters are generated by a correlated bivariate normal structure.
We find that the MSL estimator produces significant biases in the estimated param-
eters. The problem becomes worse when the true value of the variance parameter
is small and the correlation parameter is large in magnitude. Furthermore, we find
that the marginal effects are biased as large as 12% of the true values. These biases
are largely invariant to increases in the number of Halton draws. Since the exist-
ing literature has relied heavily on the MSL estimator in the analysis of the MIXL
model our findings should be an important additional warning to researchers about
potential sizable biases in the results.

We also discover that performance of MSL depends on other factors such
as model specification (i.e. EC1 or EC2), distributional assumptions, exogenous
variation, as well as true values of variance and correlation parameters. Therefore,
we believe that biases in empirical applications (e.g., discrete choice experiments
in health preference research) are likely to be worse due to real-world complexity,
however, more research is needed to address such questions. Future simulation



studies may examine biases in more complex specifications such as the generalized
MIXL or EC MIXL with more than two random parameters.



Appendix
Marginal effects taken with respect to x1 for EC1 are presented below. Marginal
effects with respect to x2 can be derived in the same way.
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where the conditional mean β̂i1 is estimated by simulation as

β̂i1 = E(β̂ q
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where vq
i1 and vq

i2 are independent standard normal random variables for individual
i = 1, ...,N and random draws q = 1, ...,Q.
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